大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
最近在做神经网络,需要对训练数据进行归一化到[0.1 0.9]之间。虽然matlab有现成的归一化函数(mapminmax() premnmx),但归一化到特定的区间,上述函数并不方便使用。由此萌生了自己编写归一化函数的想法。
本质上,常用的归一化就是线性变换。本文中以转化到[0.1 0.9]为例
y与x之间的关系为 y=ax+b ,具体一下就是
对于单个值和向量来说,只要按照上面的公式转化就行,很简单。
但很多时候,我们需要归一化的是多维向量,比如训练数据的输入特征集
X=[X1,X2,...,XM]T
,其中
Xi
是行向量。最大值向量
max=[m1,m2,...]
,最小值向量为
min=[n1,n2,...]
以2维向量为例,我们进行推导,得到:
写到这里,对于程序实现来说,并没什么卵用。接下来对两个系数矩阵进一步推导,这里的
a1,a2
和
b1,b2
对应每维向量的
a
和
b
对于matlab来说,上面的对角阵非常容易实现
一堆恶心的公式到此结束,接下来上干货儿。以matlab为例,
function [ y, xmax, xmin ] = Normalize( x, xmax , xmin )
%NORMALIZE 利用max-min方法将数据归一化到[0.1,0.9]
% input: x---每行对应一个特征,每列为一个样本,
% output: nx---归一化数据,max---特征最大值,min---特征最小值
% created by Nie Zhipeng 2016.06.24
nxmin = 0.1;
nxmax = 0.9;
if nargin < 2
P = minmax(x);
xmin = P(:,1);
xmax = P(:,2);
end
K = (nxmax - nxmin) * inv(diag(xmax - xmin));
b = diag(nxmin * xmax - nxmax * xmin) / diag(xmax - xmin);
y = K * x + b * ones(size(x));
end
function [ x ] = RNormalize( y, xmax, xmin )
%RNORMALIZE 恢复max-min方法归一化的数据
%input: nx---归一化的数据, 每行对应一个特征,每列对应一个样本
% max---特征最大值
% min---特征最小值
%Created by Nie Zhipeng 2016.06.24
nxmin = 0.1;
nxmax = 0.9;
K = 1/(nxmax-nxmin) * diag(xmax - xmin);
b = 1/(nxmax-nxmin) * diag(nxmax * xmin - nxmin * xmax);
x = K * y + b * ones(size(y));
end
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183177.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...