tensorflow2.0手写数字识别_python 数字识别

tensorflow2.0手写数字识别_python 数字识别本文使用Tensorflow框架进行Python编程实现基于卷积神经网络的手写数字识别算法,并将其封装在一个GUI界面中,最终,设计并实现了一个手写数字识别系统。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

手写数字识别算法的设计与实现

本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。


项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

1 LeNet-5模型的介绍

本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
在这里插入图片描述
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet-5采用的是mean-pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。

C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

2 手写数字识别算法模型的构建

2.1 各层设计

有了第一节的基础知识,在这基础上,进行完善和改进。

输入层设计

输入为28×28的矩阵,而不是向量。

激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

ReLU的表达式:
在这里插入图片描述

卷积层设计

本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

降采样层

本文降采样层的pooling方式是max-pooling,大小为2×2。

输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
在这里插入图片描述

2.2 网络模型的总体结构

在这里插入图片描述
其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。

2.3 编程实现算法

本文使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 17 19:50:49 2017

@author: Yonghao Huang
"""

#import modules
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import time
from datetime import timedelta
import math
from tensorflow.examples.tutorials.mnist import input_data


def new_weights(shape):
    return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
def new_biases(length):
    return tf.Variable(tf.constant(0.1,shape=length))
def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(inputx):
    return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#import data
data = input_data.read_data_sets("./data", one_hot=True)  # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2

print("Size of:")
print("--Training-set:\t\t{}".format(len(data.train.labels)))
print("--Testing-set:\t\t{}".format(len(data.test.labels)))
print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
data.test.cls = np.argmax(data.test.labels,axis=1)   # show the real test labels:  [7 2 1 ..., 4 5 6], 10000values

x = tf.placeholder("float",shape=[None,784],name='x')
x_image = tf.reshape(x,[-1,28,28,1])

y_true = tf.placeholder("float",shape=[None,10],name='y_true')
y_true_cls = tf.argmax(y_true,dimension=1)
# Conv 1
layer_conv1 = {"weights":new_weights([5,5,1,32]),
               "biases":new_biases([32])}
h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
h_pool1 = max_pool_2x2(h_conv1)
# Conv 2
layer_conv2 = {"weights":new_weights([5,5,32,64]),
               "biases":new_biases([64])}
h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
h_pool2 = max_pool_2x2(h_conv2)
# Full-connected layer 1
fc1_layer = {"weights":new_weights([7*7*64,1024]),
            "biases":new_biases([1024])}
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
# Droupout Layer
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
# Full-connected layer 2
fc2_layer = {"weights":new_weights([1024,10]),
             "biases":new_weights([10])}
# Predicted class
y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"])  # The output is like [0 0 1 0 0 0 0 0 0 0]
y_pred_cls = tf.argmax(y_pred,dimension=1)  # Show the real predict number like '2'
# cost function to be optimized
cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
# Performance Measures
correct_prediction = tf.equal(y_pred_cls,y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    train_batch_size = 50
    def optimize(num_iterations):
        total_iterations=0
        start_time = time.time()
        for i in range(total_iterations,total_iterations+num_iterations):
            x_batch,y_true_batch = data.train.next_batch(train_batch_size)
            feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
            feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
            sess.run(optimizer,feed_dict=feed_dict_train_op)
            # Print status every 100 iterations.
            if i%100==0:
                # Calculate the accuracy on the training-set.
                acc = sess.run(accuracy,feed_dict=feed_dict_train)
                # Message for printing.
                msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
                # Print it.
                print(msg.format(i+1,acc))
        # Update the total number of iterations performed
        total_iterations += num_iterations
        # Ending time
        end_time = time.time()
        # Difference between start and end_times.
        time_dif = end_time-start_time
        # Print the time-usage
        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
    test_batch_size = 256
    def print_test_accuracy():
        # Number of images in the test-set.
        num_test = len(data.test.images)
        cls_pred = np.zeros(shape=num_test,dtype=np.int)
        i = 0
        while i < num_test:
            # The ending index for the next batch is denoted j.
            j = min(i+test_batch_size,num_test)
            # Get the images from the test-set between index i and j
            images = data.test.images[i:j, :]
            # Get the associated labels
            labels = data.test.labels[i:j, :]
            # Create a feed-dict with these images and labels.
            feed_dict={x:images,y_true:labels,keep_prob:1.0}
            # Calculate the predicted class using Tensorflow.
            cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
            # Set the start-index for the next batch to the
            # end-index of the current batch
            i = j
        cls_true = data.test.cls
        correct = (cls_true==cls_pred)
        correct_sum = correct.sum()
        acc = float(correct_sum) / num_test
        # Print the accuracy
        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
        print(msg.format(acc,correct_sum,num_test))
    # Performance after 10000 optimization iterations
    
    
    

运行结果显示:测试集中准确率大概为99.2%。
我还写了一些辅助函数,可以查看部分识别错误的图片,
在这里插入图片描述
还可以查看混淆矩阵,
在这里插入图片描述

2.3 实现手写识别系统

最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。
在这里插入图片描述
系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
系统可进行快速识别,如下图:
在这里插入图片描述

3 总结

本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。

4 收获

本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。

==================================

2018年5月13日更新

以上是基本网络的设计与基本的实现,可满足入门学习。

相关链接:

========================================

2018年6月6日更新更新!!

python(TensorFlow)实现手写字符识别

此处的“手写字符”,其实指的是notMNIST数据库中的手写字符,其实和MNIST数据库是一样的。这里实现手写字符识别,主要是展示TensorFlow框架的可拓展性很强,具体来说,就是可以通过改动少部分的代码,从而实现一个新的识别功能。

NotMnist数据库

这个数据库和MNIST数据库基本一样,只是把10个数字换成了10个字母,即:A,B,C,D,E,F,G,H,I,J,K
当然,这个数据库的识别难度大一些,因为数据噪声更多一些,详情读者可以搜一搜了解一下。

实战

将NotMNIST数据库下载以后,放在本博文上述的网络中,基本不需要修改代码,直接训练,即可得到一个能识别字符的网络模型。

最后在测试集中的准确率,比MNIST的会低一些,大概为96%左右。

本文也将训练好的网络模型封装在和上述系统相似的GUI系统中,

[外链图片转存失败(img-k7xPyAio-1564543116627)(https://i.imgur.com/59M3NlD.png)]

识别效果还可以!

同样,将卷积卷积层可视化。

[外链图片转存失败(img-tIWWgZB9-1564543116629)(https://i.imgur.com/4awe7NY.png)]

结语

TensorFlow框架可拓展性很强,只要设计好了网络,就能很容易的实现出来;同时,使用基本的CNN识别整体架构也是大同小异的,很多识别任务是通用的。当然,在具体的实践中需要得到接近完美的效果,还是要下很大功夫的!努力学习吧,加油!
(如果你/您有什么有趣的想法,可以在下面留言,如果我也感兴趣同时又有时间的话,我会尝试做一做,_

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/193797.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 关于ip地址 :局域网 广域网 ip 公网 私网 ipv6 ipv4的区别、hosts文件和DNS域名解析说明

    关于ip地址 :局域网 广域网 ip 公网 私网 ipv6 ipv4的区别、hosts文件和DNS域名解析说明1.ip地址说明1.1网络基本知识说明(局域网/广域网/ip地址)场景分析:假如只有一台电脑,那么这台电脑的数据只会全部储存在此电脑的硬盘上,与其它的电脑不会产生任何关系,但是一台电脑干的事情比较少,往往需要多台电脑协同办公提高效率。问题1:多台电脑协同工作势必产生数据交互,如何进行数据交互呢???解决1:可以使用u盘之类的移动存储介质拷贝数据(缺点:需要手动的进行操作、无法做到数据的实时传输)解决2:使用线缆把2台电脑连接起来,通过这根线缆进行传输数据,这根线缆就叫做网线。如下图所示。问

    2022年10月18日
  • 向量内积/点积_两个向量的内积和外积

    向量内积/点积_两个向量的内积和外积向量内积/点积在向量空间Rn中,自然基下,向量x=(x1,…,xn)和y=(y1,…,yn)在向量空间\mathbb{R}^n中,自然基下,向量\boldsymbol{x}=(x_1,\ldots,x_n)和\boldsymbol{y}=(y_1,\ldots,y_n)在向量空间Rn中,自然基下,向量x=(x1​,…,xn​)和y=(y1​,…,yn​)的点积(dotproduct),或称内…

  • 4g模块连接阿里云_国外4G模块

    4g模块连接阿里云_国外4G模块作者:如果能编程回忆最后修改时间:2020年6月12日概述Air724模组内置TCP/IP协议栈,提供TCP客户端和服务器端服务(PS:模块没有公网IP所以服务端模式多用于专属VPN网络)。可使用AT指令,LUAT二次开发,CSDK,开源DTU等多种方式开发,开发者根据实际需求合理选择开发方式。AT指令通过AT指令使用TCP服务主要包含设备联网,配置连接,建立连接,发送数据等步骤,具体流程如图高清版TCP流程图.pdf![](https://imgconvert.csdnimg.cn/aHR0c

  • pycharm中格式化快捷键是什么_pycharm复制代码

    pycharm中格式化快捷键是什么_pycharm复制代码(1)快捷键:Ctrl+Alt+L可以将代码格式工整化(2)鼠标点击

  • datatable删除行

    先列出正确的写法,如果你只想马上改错就先复制吧,如果你有时间想学习一下就继续看下面列出可能出错的可能性吧。1.如果只是想删除datatable中的一行,可以用DataRow的delete,但是必须

    2021年12月24日
  • 一种集各种优点于一身的技术面试方式–转「建议收藏」

    一种集各种优点于一身的技术面试方式–转

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号