resnet18 pytorch_如何搭建服务器

resnet18 pytorch_如何搭建服务器参照ResNet50的搭建,由于50层以上几乎相同,叠加卷积单元数即可,所以没有写注释。101和152的搭建注释可以参照我的ResNet50搭建中的注释:训练可以参照我的ResNet18搭建中的训练部分:ResNet101和152可以依旧参照ResNet50的网络图片:上代码:ResNet101的model.py模型:importtorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassDownSampl

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

ResNet18的搭建请移步:使用PyTorch搭建ResNet18网络并使用CIFAR10数据集训练测试
ResNet34的搭建请移步:使用PyTorch搭建ResNet34网络
ResNet34的搭建请移步:使用PyTorch搭建ResNet50网络

参照我的ResNet50的搭建,由于50层以上几乎相同,叠加卷积单元数即可,所以没有写注释。
ResNet101和152的搭建注释可以参照我的ResNet50搭建中的注释
ResNet101和152的训练可以参照我的ResNet18搭建中的训练部分

ResNet101和152可以依旧参照ResNet50的网络图片:
在这里插入图片描述

上代码:

ResNet101的model.py模型:

import torch
import torch.nn as nn
from torch.nn import functional as F


class DownSample(nn.Module):
    def __init__(self, in_channel, out_channel, stride):
        super(DownSample, self).__init__()
        self.down = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        out = self.down(x)
        return out


class ResNet101(nn.Module):
    def __init__(self, classes_num):            # 指定分类数
        super(ResNet101, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
        # --------------------------------------------------------------------
        self.layer1_first = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        self.layer1_next = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        # --------------------------------------------------------------------
        self.layer2_first = nn.Sequential(
            nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        self.layer2_next = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        # --------------------------------------------------------------------
        self.layer3_first = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        self.layer3_next = nn.Sequential(
            nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        # --------------------------------------------------------------------
        self.layer4_first = nn.Sequential(
            nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        self.layer4_next = nn.Sequential(
            nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        # --------------------------------------------------------------------
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(2048 * 1 * 1, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(1000, classes_num)
        )

    def forward(self, x):
        out = self.pre(x)
        # --------------------------------------------------------------------
        layer1_shortcut = DownSample(64, 256, 1)
        layer1_shortcut.to('cuda:0')
        layer1_identity = layer1_shortcut(out)
        out = self.layer1_first(out)
        out = F.relu(out + layer1_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer1_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer2_shortcut = DownSample(256, 512, 2)
        layer2_shortcut.to('cuda:0')
        layer2_identity = layer2_shortcut(out)
        out = self.layer2_first(out)
        out = F.relu(out + layer2_identity, inplace=True)

        for i in range(3):
            identity = out
            out = self.layer2_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer3_shortcut = DownSample(512, 1024, 2)
        layer3_shortcut.to('cuda:0')
        layer3_identity = layer3_shortcut(out)
        out = self.layer3_first(out)
        out = F.relu(out + layer3_identity, inplace=True)

        for i in range(22):
            identity = out
            out = self.layer3_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        layer4_shortcut = DownSample(1024, 2048, 2)
        layer4_shortcut.to('cuda:0')
        layer4_identity = layer4_shortcut(out)
        out = self.layer4_first(out)
        out = F.relu(out + layer4_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer4_next(out)
            out = F.relu(out + identity, inplace=True)
        # --------------------------------------------------------------------
        out = self.avg_pool(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)

        return out


ResNet152的model.py模型:

import torch
import torch.nn as nn
from torch.nn import functional as F


class DownSample(nn.Module):
    def __init__(self, in_channel, out_channel, stride):
        super(DownSample, self).__init__()
        self.down = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True)
        )
        
    def forward(self, x):
        out = self.down(x)
        return out


class ResNet152(nn.Module):
    def __init__(self, classes_num):            # 指定了分类数目
        super(ResNet152, self).__init__()
        self.pre = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )
        # -----------------------------------------------------------------------
        self.layer1_first = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        self.layer1_next = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256)
        )
        # -----------------------------------------------------------------------
        self.layer2_first = nn.Sequential(
            nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        self.layer2_next = nn.Sequential(
            nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512)
        )
        # -----------------------------------------------------------------------
        self.layer3_first = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        self.layer3_next = nn.Sequential(
            nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(1024)
        )
        # -----------------------------------------------------------------------
        self.layer4_first = nn.Sequential(
            nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        self.layer4_next = nn.Sequential(
            nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(2048)
        )
        # -----------------------------------------------------------------------
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(2048 * 1 * 1, 1000),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(1000, classes_num)
        )

    def forward(self, x):
        out = self.pre(x)
        # -----------------------------------------------------------------------
        layer1_shortcut = DownSample(64, 256, 1)
        # layer1_shortcut.to('cuda:0')
        layer1_identity = layer1_shortcut(out)
        out = self.layer1_first(out)
        out = F.relu(out + layer1_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer1_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer2_shortcut = DownSample(256, 512, 2)
        # layer2_shortcut.to('cuda:0')
        layer2_identity = layer2_shortcut(out)
        out = self.layer2_first(out)
        out = F.relu(out + layer2_identity, inplace=True)

        for i in range(7):
            identity = out
            out = self.layer2_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer3_shortcut = DownSample(512, 1024, 2)
        # layer3_shortcut.to('cuda:0')
        layer3_identity = layer3_shortcut(out)
        out = self.layer3_first(out)
        out = F.relu(out + layer3_identity, inplace=True)

        for i in range(35):
            identity = out
            out = self.layer3_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        layer4_shortcut = DownSample(1024, 2048, 2)
        # layer4_shortcut.to('cuda:0')
        layer4_identity = layer4_shortcut(out)
        out = self.layer4_first(out)
        out = F.relu(out + layer4_identity, inplace=True)

        for i in range(2):
            identity = out
            out = self.layer4_next(out)
            out = F.relu(out + identity, inplace=True)
        # -----------------------------------------------------------------------
        out = self.avg_pool(out)
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)

        return out
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/185167.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 强化学习 — MCTS

    强化学习 — MCTS目录Simulation-BasedSearchMCSearchMCTS上线置信区间算法UCT棋类游戏MCTS搜索Simulation-BasedSearch基于仿真的搜索包含两点:一个是simulation,其次是search。simulation是基于强化学习model进行采样,得到样本数据。但这不是基于和环境交互获得的真实数据。search则是为了利用样本结果来帮我们计算应该采用什么动作,以实现长期利益最大化要理解什么是Simulation-BasedSearch,首先要明白什么是for

  • 怎样用Python识别条形码?

    怎样用Python识别条形码?最近一位热心的网友找到宋宋,想做一个条形码或者二维码的识别系统。现在,他在北京的某知名大型连锁超市,需要通过Python识别条形码,进行快速的商品库存录入。如果已经存在的则不进行录入。不知Python能否实现?所以趁此机会我们给大家介绍下OpenCV和pyzbar。废话不多说,进入正题……条码在生活中随处可见,其可分为三类:一维条码、二维条码、三维条码一维条码:我们平时习惯称为条形码。条形码是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识…

    2022年10月24日
  • 谷歌网盘扩容价格_谷歌云盘无限容量

    谷歌网盘扩容价格_谷歌云盘无限容量如何不用信用卡也不用PayPal来对谷歌网盘扩容呢?

  • LINUX系统更改系统时区

    LINUX系统更改系统时区Linux-Redhat系统更改系统时区[root@localhost~]#date #查看本地时间ThuMay1923:41:32EDT2022[root@localhost~]#hwclock–show #查看硬件时间Thu19May202211:42:07PMEDT-0.332325seconds当前系统版本:RedHatEnterpriseLinuxServerrelease7.0(Maipo)查看目前的时区:[r

    2022年10月30日
  • 博客内容概要

    前言python课程周期及相关内容计算机基础操作系统和网络基础知识计算机硬件历史计算机硬件知识网络基础之网络协议Python开发Python基础pycharm安装PyCharm常用

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号