大家好,又见面了,我是你们的朋友全栈君。
The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def extract_images(filename):
“””Extract the images into a 4D uint8 numpy array [index, y, x, depth].”””
print(‘Extracting’, filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
‘Invalid magic number %d in MNIST image file: %s’ %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
Example 2
def gl_init(self,array_table):
self.gl_hide = False
self.gl_vertex_array = gl.VertexArray()
glBindVertexArray(self.gl_vertex_array)
self.gl_vertex_buffer = gl.Buffer()
glBindBuffer(GL_ARRAY_BUFFER,self.gl_vertex_buffer)
self.gl_element_count = 3*gl_count_triangles(self)
self.gl_element_buffer = gl.Buffer()
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,self.gl_element_buffer)
vertex_type = numpy.dtype([array_table[attribute].field() for attribute in self.attributes])
vertex_count = sum(len(primitive.vertices) for primitive in self.primitives)
vertex_array = numpy.empty(vertex_count,vertex_type)
for attribute in self.attributes:
array_table[attribute].load(self,vertex_array)
vertex_array,element_map = numpy.unique(vertex_array,return_inverse=True)
element_array = gl_create_element_array(self,element_map,self.gl_element_count)
glBufferData(GL_ARRAY_BUFFER,vertex_array.nbytes,vertex_array,GL_STATIC_DRAW)
glBufferData(GL_ELEMENT_ARRAY_BUFFER,element_array.nbytes,element_array,GL_STATIC_DRAW)
Example 3
def extract_images(filename):
“””Extract the images into a 4D uint8 numpy array [index, y, x, depth].”””
print(‘Extracting’, filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
‘Invalid magic number %d in MNIST image file: %s’ %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
Example 4
def __keytransform__(self, key):
if isinstance(key[0], np.ndarray):
shape = key[0].shape
dtype = key[0].dtype
i = key[1]
zero = True if len(key) == 2 else key[2]
elif isinstance(key[0], tuple):
if len(key) == 3:
shape, dtype, i = key
zero = True
elif len(key) == 4:
shape, dtype, i, zero = key
else:
raise TypeError(“Wrong type of key for work array”)
assert isinstance(zero, bool)
assert isinstance(i, int)
self.fillzero = zero
return (shape, np.dtype(dtype), i)
Example 5
def accumulate_strings(values, name=”strings”):
“””Accumulates strings into a vector.
Args:
values: A 1-d string tensor that contains values to add to the accumulator.
Returns:
A tuple (value_tensor, update_op).
“””
tf.assert_type(values, tf.string)
strings = tf.Variable(
name=name,
initial_value=[],
dtype=tf.string,
trainable=False,
collections=[],
validate_shape=True)
value_tensor = tf.identity(strings)
update_op = tf.assign(
ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
return value_tensor, update_op
Example 6
def test_expect_dtypes_with_tuple(self):
allowed_dtypes = (dtype(‘datetime64[ns]’), dtype(‘float’))
@expect_dtypes(a=allowed_dtypes)
def foo(a, b):
return a, b
for d in allowed_dtypes:
good_a = arange(3).astype(d)
good_b = object()
ret_a, ret_b = foo(good_a, good_b)
self.assertIs(good_a, ret_a)
self.assertIs(good_b, ret_b)
with self.assertRaises(TypeError) as e:
foo(arange(3, dtype=’uint32′), object())
expected_message = (
“{qualname}() expected a value with dtype ‘datetime64[ns]’ “
“or ‘float64’ for argument ‘a’, but got ‘uint32’ instead.”
).format(qualname=qualname(foo))
self.assertEqual(e.exception.args[0], expected_message)
Example 7
def _classify_gems(counts0, counts1):
“”” Infer number of distinct transcriptomes present in each GEM (1 or 2) and
report cr_constants.GEM_CLASS_GENOME0 for a single cell w/ transcriptome 0,
report cr_constants.GEM_CLASS_GENOME1 for a single cell w/ transcriptome 1,
report cr_constants.GEM_CLASS_MULTIPLET for multiple transcriptomes “””
# Assumes that most of the GEMs are single-cell; model counts independently
thresh0, thresh1 = [cr_constants.DEFAULT_MULTIPLET_THRESHOLD] * 2
if sum(counts0 > counts1) >= 1 and sum(counts1 > counts0) >= 1:
thresh0 = np.percentile(counts0[counts0 > counts1], cr_constants.MULTIPLET_PROB_THRESHOLD)
thresh1 = np.percentile(counts1[counts1 > counts0], cr_constants.MULTIPLET_PROB_THRESHOLD)
doublet = np.logical_and(counts0 >= thresh0, counts1 >= thresh1)
dtype = np.dtype(‘|S%d’ % max(len(cls) for cls in cr_constants.GEM_CLASSES))
result = np.where(doublet, cr_constants.GEM_CLASS_MULTIPLET, cr_constants.GEM_CLASS_GENOME0).astype(dtype)
result[np.logical_and(np.logical_not(result == cr_constants.GEM_CLASS_MULTIPLET), counts1 > counts0)] = cr_constants.GEM_CLASS_GENOME1
return result
Example 8
def widen_cat_column(old_ds, new_type):
name = old_ds.name
tmp_name = “__tmp_” + old_ds.name
grp = old_ds.parent
ds = grp.create_dataset(tmp_name,
data = old_ds[:],
shape = old_ds.shape,
maxshape = (None,),
dtype = new_type,
compression = COMPRESSION,
shuffle = True,
chunks = (CHUNK_SIZE,))
del grp[name]
grp.move(tmp_name, name)
return ds
Example 9
def create_levels(ds, levels):
# Create a dataset in the LEVEL_GROUP
# and store as native numpy / h5py types
level_grp = ds.file.get(LEVEL_GROUP)
if level_grp is None:
# Create a LEVEL_GROUP
level_grp = ds.file.create_group(LEVEL_GROUP)
ds_name = ds.name.split(“/”)[-1]
dt = h5py.special_dtype(vlen=str)
level_grp.create_dataset(ds_name,
shape = [len(levels)],
maxshape = (None,),
dtype = dt,
data = levels,
compression = COMPRESSION,
chunks = (CHUNK_SIZE,))
Example 10
def reg2bin_vector(begin, end):
”’Vectorized tabix reg2bin — much faster than reg2bin”’
result = np.zeros(begin.shape)
# Entries filled
done = np.zeros(begin.shape, dtype=np.bool)
for (bits, bins) in rev_bit_bins:
begin_shift = begin >> bits
new_done = (begin >> bits) == (end >> bits)
mask = np.logical_and(new_done, np.logical_not(done))
offset = ((1 << (29 – bits)) – 1) / 7
result[mask] = offset + begin_shift[mask]
done = new_done
return result.astype(np.int32)
Example 11
def flip_code(code):
if isinstance(code, (numpy.dtype,type)):
# since several things map to complex64 we must carefully select
# the opposite that is an exact match (ticket 1518)
if code == numpy.int8:
return gdalconst.GDT_Byte
if code == numpy.complex64:
return gdalconst.GDT_CFloat32
for key, value in codes.items():
if value == code:
return key
return None
else:
try:
return codes[code]
except KeyError:
return None
Example 12
def make2d(array, cols=None, dtype=None):
”’
Make a 2D array from an array of arrays. The `cols’ and `dtype’
arguments can be omitted if the array is not empty.
”’
if (cols is None or dtype is None) and not len(array):
raise RuntimeError(“cols and dtype must be specified for empty “
“array”)
if cols is None:
cols = len(array[0])
if dtype is None:
dtype = array[0].dtype
return _np.fromiter(array, [(‘_’, dtype, (cols,))],
count=len(array))[‘_’]
Example 13
def _read(self, stream, text, byte_order):
”’
Read the actual data from a PLY file.
”’
if text:
self._read_txt(stream)
else:
if self._have_list:
# There are list properties, so a simple load is
# impossible.
self._read_bin(stream, byte_order)
else:
# There are no list properties, so loading the data is
# much more straightforward.
self._data = _np.fromfile(stream,
self.dtype(byte_order),
self.count)
if len(self._data) < self.count:
k = len(self._data)
del self._data
raise PlyParseError(“early end-of-file”, self, k)
self._check_sanity()
Example 14
def _read_bin(self, stream, byte_order):
”’
Load a PLY element from a binary PLY file. The element may
contain list properties.
”’
self._data = _np.empty(self.count, dtype=self.dtype(byte_order))
for k in _range(self.count):
for prop in self.properties:
try:
self._data[prop.name][k] = \
prop._read_bin(stream, byte_order)
except StopIteration:
raise PlyParseError(“early end-of-file”,
self, k, prop)
Example 15
def _merge_all(parts, dtype):
if len(parts) == 1:
return parts[0]
else:
nparts = []
for i in xrange(0, len(parts), 2):
if i+1 < len(parts):
npart = numpy.empty((len(parts[i])+len(parts[i+1]), 2), dtype)
merge_elements = index_merge(parts[i], parts[i+1], npart)
if merge_elements != len(npart):
npart = npart[:merge_elements]
nparts.append(npart)
else:
nparts.append(parts[i])
del parts
return _merge_all(nparts, dtype)
Example 16
def __init__(self, buf, offset = 0):
# Accelerate class attributes
self._encode = self.encode
self._dtype = self.dtype
self._xxh = self.xxh
# Initialize buffer
if offset:
self._buf = self._likebuf = buffer(buf, offset)
else:
self._buf = buf
self._likebuf = _likebuffer(buf)
# Parse header and map index
self.index_elements, self.index_offset = self._Header.unpack_from(self._buf, 0)
self.index = numpy.ndarray(buffer = self._buf,
offset = self.index_offset,
dtype = self.dtype,
shape = (self.index_elements, 3))
Example 17
def test_rescaleData():
dtypes = map(np.dtype, (‘ubyte’, ‘uint16’, ‘byte’, ‘int16’, ‘int’, ‘float’))
for dtype1 in dtypes:
for dtype2 in dtypes:
data = (np.random.random(size=10) * 2**32 – 2**31).astype(dtype1)
for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
if dtype2.kind in ‘iu’:
lim = np.iinfo(dtype2)
lim = lim.min, lim.max
else:
lim = (-np.inf, np.inf)
s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
s2 = pg.rescaleData(data, scale, offset, dtype2)
assert s1.dtype == s2.dtype
if dtype2.kind in ‘iu’:
assert np.all(s1 == s2)
else:
assert np.allclose(s1, s2)
Example 18
def solve3DTransform(points1, points2):
“””
Find a 3D transformation matrix that maps points1 onto points2.
Points must be specified as either lists of 4 Vectors or
(4, 3) arrays.
“””
import numpy.linalg
pts = []
for inp in (points1, points2):
if isinstance(inp, np.ndarray):
A = np.empty((4,4), dtype=float)
A[:,:3] = inp[:,:3]
A[:,3] = 1.0
else:
A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)])
pts.append(A)
## solve 3 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((4,4))
for i in range(3):
## solve Ax = B; x is one row of the desired transformation matrix
matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i])
return matrix
Example 19
def __init__(self, index, channel_names=None, channel_ids=None,
name=None, description=None, file_origin=None,
coordinates=None, **annotations):
”’
Initialize a new :class:`ChannelIndex` instance.
”’
# Inherited initialization
# Sets universally recommended attributes, and places all others
# in annotations
super(ChannelIndex, self).__init__(name=name,
description=description,
file_origin=file_origin,
**annotations)
# Defaults
if channel_names is None:
channel_names = np.array([], dtype=’S’)
if channel_ids is None:
channel_ids = np.array([], dtype=’i’)
# Store recommended attributes
self.channel_names = np.array(channel_names)
self.channel_ids = np.array(channel_ids)
self.index = np.array(index)
self.coordinates = coordinates
Example 20
def load_bytes(self, data_blocks, dtype=’
“””
Return list of bytes contained
in the specified set of blocks.
NB : load all data as files cannot exceed 4Gb
find later other solutions to spare memory.
“””
chunks = list()
raw = ”
# keep only data blocks having
# a size greater than zero
blocks = [k for k in data_blocks if k.size > 0]
for data_block in blocks :
self.file.seek(data_block.start)
raw = self.file.read(data_block.size)[0:expected_size]
databytes = np.frombuffer(raw, dtype=dtype)
chunks.append(databytes)
# concatenate all chunks and return
# the specified slice
if len(chunks)>0 :
databytes = np.concatenate(chunks)
return databytes[start:end]
else :
return np.array([])
Example 21
def load_channel_data(self, ep, ch):
“””
Return a numpy array containing the
list of bytes corresponding to the
specified episode and channel.
“””
#memorise the sample size and symbol
sample_size = self.sample_size(ep, ch)
sample_symbol = self.sample_symbol(ep, ch)
#create a bit mask to define which
#sample to keep from the file
bit_mask = self.create_bit_mask(ep, ch)
#load all bytes contained in an episode
data_blocks = self.get_data_blocks(ep)
databytes = self.load_bytes(data_blocks)
raw = self.filter_bytes(databytes, bit_mask)
#reshape bytes from the sample size
dt = np.dtype(numpy_map[sample_symbol])
dt.newbyteorder(‘
return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
Example 22
def get_signal_data(self, ep, ch):
“””
Return a numpy array containing all samples of a
signal, acquired on an Elphy analog channel, formatted
as a list of (time, value) tuples.
“””
#get data from the file
y_data = self.load_encoded_data(ep, ch)
x_data = np.arange(0, len(y_data))
#create a recarray
data = np.recarray(len(y_data), dtype=[(‘x’, b_float), (‘y’, b_float)])
#put in the recarray the scaled data
x_factors = self.x_scale_factors(ep, ch)
y_factors = self.y_scale_factors(ep, ch)
data[‘x’] = x_factors.scale(x_data)
data[‘y’] = y_factors.scale(y_data)
return data
Example 23
def get_tag_data(self, ep, tag_ch):
“””
Return a numpy array containing all samples of a
signal, acquired on an Elphy tag channel, formatted
as a list of (time, value) tuples.
“””
#get data from the file
y_data = self.load_encoded_tags(ep, tag_ch)
x_data = np.arange(0, len(y_data))
#create a recarray
data = np.recarray(len(y_data), dtype=[(‘x’, b_float), (‘y’, b_int)])
#put in the recarray the scaled data
factors = self.x_tag_scale_factors(ep)
data[‘x’] = factors.scale(x_data)
data[‘y’] = y_data
return data
Example 24
def get_event(self, ep, ch, marked_ks):
“””
Return a :class:`ElphyEvent` which is a
descriptor of the specified event channel.
“””
assert ep in range(1, self.n_episodes + 1)
assert ch in range(1, self.n_channels + 1)
# find the event channel number
evt_channel = np.where(marked_ks == -1)[0][0]
assert evt_channel in range(1, self.n_events(ep) + 1)
block = self.episode_block(ep)
ep_blocks = self.get_blocks_stored_in_episode(ep)
evt_blocks = [k for k in ep_blocks if k.identifier == ‘REVT’]
n_events = np.sum([k.n_events[evt_channel – 1] for k in evt_blocks], dtype=int)
x_unit = block.ep_block.x_unit
return ElphyEvent(self, ep, evt_channel, x_unit, n_events, ch_number=ch)
Example 25
def load_encoded_events(self, episode, evt_channel, identifier):
“””
Return times stored as a 4-bytes integer
in the specified event channel.
“””
data_blocks = self.group_blocks_of_type(episode, identifier)
ep_blocks = self.get_blocks_stored_in_episode(episode)
evt_blocks = [k for k in ep_blocks if k.identifier == identifier]
#compute events on each channel
n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
pre_events = np.sum(n_events[0:evt_channel – 1], dtype=int)
start = pre_events
end = start + n_events[evt_channel – 1]
expected_size = 4 * np.sum(n_events, dtype=int)
return self.load_bytes(data_blocks, dtype=’
Example 26
def load_encoded_spikes(self, episode, evt_channel, identifier):
“””
Return times stored as a 4-bytes integer
in the specified spike channel.
NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label.
These additiona bytes are appended trailing the times.
“””
# to load the requested spikes for the specified episode and event channel:
# get all the elphy blocks having as identifier ‘RSPK’ (or whatever)
all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier]
rspk_block = all_rspk_blocks[episode-1]
# RDATA(h?dI) REVT(NbVeV:I, NbEv:256I … spike data are 4byte integers
rspk_header = 4*( rspk_block.size – rspk_block.data_size-2 + len(rspk_block.n_events))
pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0)
# the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte)
start = rspk_header + (4*pre_events) + pre_events
end = start + 4*rspk_block.n_events[evt_channel-1]
raw = self.load_bytes( [rspk_block], dtype=’
# re-encoding after reading byte by byte
res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype=’
res.sort() # sometimes timings are not sorted
#print “load_encoded_data() – spikes:”,res
return res
Example 27
def get_waveform_data(self, episode, electrode_id):
“””
Return waveforms corresponding to the specified
spike channel. This function is triggered when the
“waveforms“ property of an :class:`Spike` descriptor
instance is accessed.
“””
block = self.episode_block(episode)
times, databytes = self.load_encoded_waveforms(episode, electrode_id)
n_events, = databytes.shape
wf_samples = databytes[‘waveform’].shape[1]
dtype = [
(‘time’, float),
(‘electrode_id’, int),
(‘unit_id’, int),
(‘waveform’, float, (wf_samples, 2))
]
data = np.empty(n_events, dtype=dtype)
data[‘electrode_id’] = databytes[‘channel_id’][:, 0]
data[‘unit_id’] = databytes[‘unit_id’][:, 0]
data[‘time’] = databytes[‘elphy_time’][:, 0] * block.ep_block.dX
data[‘waveform’][:, :, 0] = times * block.ep_block.dX
data[‘waveform’][:, :, 1] = databytes[‘waveform’] * block.ep_block.dY_wf + block.ep_block.Y0_wf
return data
Example 28
def get_rspk_data(self, spk_channel):
“””
Return times stored as a 4-bytes integer
in the specified event channel.
“””
evt_blocks = self.get_blocks_of_type(‘RSPK’)
#compute events on each channel
n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
pre_events = np.sum(n_events[0:spk_channel], dtype=int) # sum of array values up to spk_channel-1!!!!
start = pre_events + (7 + len(n_events))# rspk header
end = start + n_events[spk_channel]
expected_size = 4 * np.sum(n_events, dtype=int) # constant
return self.load_bytes(evt_blocks, dtype=’
# ———————————————————
# factories.py
Example 29
def __mmap_ncs_packet_headers(self, filename):
“””
Memory map of the Neuralynx .ncs file optimized for extraction of
data packet headers
Reading standard dtype improves speed, but timestamps need to be
reconstructed
“””
filesize = getsize(self.sessiondir + sep + filename) # in byte
if filesize > 16384:
data = np.memmap(self.sessiondir + sep + filename,
dtype=’
shape=((filesize – 16384) / 4 / 261, 261),
mode=’r’, offset=16384)
ts = data[:, 0:2]
multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data),
axis=0)
timestamps = np.sum(ts * multi, axis=1)
# timestamps = data[:,0] + (data[:,1] *2**32)
header_u4 = data[:, 2:5]
return timestamps, header_u4
else:
return None
Example 30
def __mmap_ncs_packet_timestamps(self, filename):
“””
Memory map of the Neuralynx .ncs file optimized for extraction of
data packet headers
Reading standard dtype improves speed, but timestamps need to be
reconstructed
“””
filesize = getsize(self.sessiondir + sep + filename) # in byte
if filesize > 16384:
data = np.memmap(self.sessiondir + sep + filename,
dtype=’
shape=(int((filesize – 16384) / 4 / 261), 261),
mode=’r’, offset=16384)
ts = data[:, 0:2]
multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data),
axis=0)
timestamps = np.sum(ts * multi, axis=1)
# timestamps = data[:,0] + data[:,1]*2**32
return timestamps
else:
return None
Example 31
def __mmap_nev_file(self, filename):
“”” Memory map the Neuralynx .nev file “””
nev_dtype = np.dtype([
(‘reserved’, ‘
(‘system_id’, ‘
(‘data_size’, ‘
(‘timestamp’, ‘
(‘event_id’, ‘
(‘ttl_input’, ‘
(‘crc_check’, ‘
(‘dummy1’, ‘
(‘dummy2’, ‘
(‘extra’, ‘
(‘event_string’, ‘a128’),
])
if getsize(self.sessiondir + sep + filename) > 16384:
return np.memmap(self.sessiondir + sep + filename,
dtype=nev_dtype, mode=’r’, offset=16384)
else:
return None
Example 32
def __extract_nev_file_spec(self):
“””
Extract file specification from an .nsx file
“””
filename = ‘.’.join([self._filenames[‘nsx’], ‘nev’])
# Header structure of files specification 2.2 and higher. For files 2.1
# and lower, the entries ver_major and ver_minor are not supported.
dt0 = [
(‘file_id’, ‘S8’),
(‘ver_major’, ‘uint8’),
(‘ver_minor’, ‘uint8’)]
nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
if nev_file_id[‘file_id’].decode() == ‘NEURALEV’:
spec = ‘{0}.{1}’.format(
nev_file_id[‘ver_major’], nev_file_id[‘ver_minor’])
else:
raise IOError(‘NEV file type {0} is not supported’.format(
nev_file_id[‘file_id’]))
return spec
Example 33
def __read_nsx_data_variant_a(self, nsx_nb):
“””
Extract nsx data from a 2.1 .nsx file
“””
filename = ‘.’.join([self._filenames[‘nsx’], ‘ns%i’ % nsx_nb])
# get shape of data
shape = (
self.__nsx_databl_param[‘2.1’](‘nb_data_points’, nsx_nb),
self.__nsx_basic_header[nsx_nb][‘channel_count’])
offset = self.__nsx_params[‘2.1’](‘bytes_in_headers’, nsx_nb)
# read nsx data
# store as dict for compatibility with higher file specs
data = {1: np.memmap(
filename, dtype=’int16′, shape=shape, offset=offset)}
return data
Example 34
def __read_nev_data(self, nev_data_masks, nev_data_types):
“””
Extract nev data from a 2.1 or 2.2 .nev file
“””
filename = ‘.’.join([self._filenames[‘nev’], ‘nev’])
data_size = self.__nev_basic_header[‘bytes_in_data_packets’]
header_size = self.__nev_basic_header[‘bytes_in_headers’]
# read all raw data packets and markers
dt0 = [
(‘timestamp’, ‘uint32’),
(‘packet_id’, ‘uint16’),
(‘value’, ‘S{0}’.format(data_size – 6))]
raw_data = np.memmap(filename, offset=header_size, dtype=dt0)
masks = self.__nev_data_masks(raw_data[‘packet_id’])
types = self.__nev_data_types(data_size)
data = {}
for k, v in nev_data_masks.items():
data[k] = raw_data.view(types[k][nev_data_types[k]])[masks[k][v]]
return data
Example 35
def __get_nev_rec_times(self):
“””
Extracts minimum and maximum time points from a nev file.
“””
filename = ‘.’.join([self._filenames[‘nev’], ‘nev’])
dt = [(‘timestamp’, ‘uint32’)]
offset = \
self.__get_file_size(filename) – \
self.__nev_params(‘bytes_in_data_packets’)
last_data_packet = np.memmap(filename, offset=offset, dtype=dt)[0]
n_starts = [0 * self.__nev_params(‘event_unit’)]
n_stops = [
last_data_packet[‘timestamp’] * self.__nev_params(‘event_unit’)]
return n_starts, n_stops
Example 36
def __get_waveforms_dtype(self):
“””
Extracts the actual waveform dtype set for each channel.
“””
# Blackrock code giving the approiate dtype
conv = {0: ‘int8’, 1: ‘int8’, 2: ‘int16’, 4: ‘int32’}
# get all electrode ids from nev ext header
all_el_ids = self.__nev_ext_header[b’NEUEVWAV’][‘electrode_id’]
# get the dtype of waveform (this is stupidly complicated)
if self.__is_set(
np.array(self.__nev_basic_header[‘additionnal_flags’]), 0):
dtype_waveforms = dict((k, ‘int16’) for k in all_el_ids)
else:
# extract bytes per waveform
waveform_bytes = \
self.__nev_ext_header[b’NEUEVWAV’][‘bytes_per_waveform’]
# extract dtype for waveforms fro each electrode
dtype_waveforms = dict(zip(all_el_ids, conv[waveform_bytes]))
return dtype_waveforms
Example 37
def __read_comment(self,n_start,n_stop,data,lazy=False):
event_unit = self.__nev_params(‘event_unit’)
if lazy:
times = []
labels = np.array([],dtype=’s’)
else:
times = data[‘timestamp’]*event_unit
labels = data[‘comment’].astype(str)
# mask for given time interval
mask = (times >= n_start) & (times < n_stop)
if np.sum(mask)>0:
ev = Event(
times = times[mask].astype(float),
labels = labels[mask],
name = ‘comment’)
if lazy:
ev.lazy_shape = np.sum(mask)
else:
ev = None
return ev
# ————–end——added by zhangbo 20170926——–
Example 38
def reformat_integer_v1(data, nbchannel, header):
“””
reformat when dtype is int16 for ABF version 1
“””
chans = [chan_num for chan_num in
header[‘nADCSamplingSeq’] if chan_num >= 0]
for n, i in enumerate(chans[:nbchannel]): # respect SamplingSeq
data[:, n] /= header[‘fInstrumentScaleFactor’][i]
data[:, n] /= header[‘fSignalGain’][i]
data[:, n] /= header[‘fADCProgrammableGain’][i]
if header[‘nTelegraphEnable’][i]:
data[:, n] /= header[‘fTelegraphAdditGain’][i]
data[:, n] *= header[‘fADCRange’]
data[:, n] /= header[‘lADCResolution’]
data[:, n] += header[‘fInstrumentOffset’][i]
data[:, n] -= header[‘fSignalOffset’][i]
Example 39
def solve3DTransform(points1, points2):
“””
Find a 3D transformation matrix that maps points1 onto points2.
Points must be specified as either lists of 4 Vectors or
(4, 3) arrays.
“””
import numpy.linalg
pts = []
for inp in (points1, points2):
if isinstance(inp, np.ndarray):
A = np.empty((4,4), dtype=float)
A[:,:3] = inp[:,:3]
A[:,3] = 1.0
else:
A = np.array([[inp[i].x(), inp[i].y(), inp[i].z(), 1] for i in range(4)])
pts.append(A)
## solve 3 sets of linear equations to determine transformation matrix elements
matrix = np.zeros((4,4))
for i in range(3):
## solve Ax = B; x is one row of the desired transformation matrix
matrix[i] = numpy.linalg.solve(pts[0], pts[1][:,i])
return matrix
Example 40
def __init__(self, index, channel_names=None, channel_ids=None,
name=None, description=None, file_origin=None,
coordinates=None, **annotations):
”’
Initialize a new :class:`ChannelIndex` instance.
”’
# Inherited initialization
# Sets universally recommended attributes, and places all others
# in annotations
super(ChannelIndex, self).__init__(name=name,
description=description,
file_origin=file_origin,
**annotations)
# Defaults
if channel_names is None:
channel_names = np.array([], dtype=’S’)
if channel_ids is None:
channel_ids = np.array([], dtype=’i’)
# Store recommended attributes
self.channel_names = np.array(channel_names)
self.channel_ids = np.array(channel_ids)
self.index = np.array(index)
self.coordinates = coordinates
Example 41
def load_bytes(self, data_blocks, dtype=’
“””
Return list of bytes contained
in the specified set of blocks.
NB : load all data as files cannot exceed 4Gb
find later other solutions to spare memory.
“””
chunks = list()
raw = ”
# keep only data blocks having
# a size greater than zero
blocks = [k for k in data_blocks if k.size > 0]
for data_block in blocks :
self.file.seek(data_block.start)
raw = self.file.read(data_block.size)[0:expected_size]
databytes = np.frombuffer(raw, dtype=dtype)
chunks.append(databytes)
# concatenate all chunks and return
# the specified slice
if len(chunks)>0 :
databytes = np.concatenate(chunks)
return databytes[start:end]
else :
return np.array([])
Example 42
def load_channel_data(self, ep, ch):
“””
Return a numpy array containing the
list of bytes corresponding to the
specified episode and channel.
“””
#memorise the sample size and symbol
sample_size = self.sample_size(ep, ch)
sample_symbol = self.sample_symbol(ep, ch)
#create a bit mask to define which
#sample to keep from the file
bit_mask = self.create_bit_mask(ep, ch)
#load all bytes contained in an episode
data_blocks = self.get_data_blocks(ep)
databytes = self.load_bytes(data_blocks)
raw = self.filter_bytes(databytes, bit_mask)
#reshape bytes from the sample size
dt = np.dtype(numpy_map[sample_symbol])
dt.newbyteorder(‘
return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
Example 43
def get_signal_data(self, ep, ch):
“””
Return a numpy array containing all samples of a
signal, acquired on an Elphy analog channel, formatted
as a list of (time, value) tuples.
“””
#get data from the file
y_data = self.load_encoded_data(ep, ch)
x_data = np.arange(0, len(y_data))
#create a recarray
data = np.recarray(len(y_data), dtype=[(‘x’, b_float), (‘y’, b_float)])
#put in the recarray the scaled data
x_factors = self.x_scale_factors(ep, ch)
y_factors = self.y_scale_factors(ep, ch)
data[‘x’] = x_factors.scale(x_data)
data[‘y’] = y_factors.scale(y_data)
return data
Example 44
def get_tag_data(self, ep, tag_ch):
“””
Return a numpy array containing all samples of a
signal, acquired on an Elphy tag channel, formatted
as a list of (time, value) tuples.
“””
#get data from the file
y_data = self.load_encoded_tags(ep, tag_ch)
x_data = np.arange(0, len(y_data))
#create a recarray
data = np.recarray(len(y_data), dtype=[(‘x’, b_float), (‘y’, b_int)])
#put in the recarray the scaled data
factors = self.x_tag_scale_factors(ep)
data[‘x’] = factors.scale(x_data)
data[‘y’] = y_data
return data
Example 45
def load_encoded_events(self, episode, evt_channel, identifier):
“””
Return times stored as a 4-bytes integer
in the specified event channel.
“””
data_blocks = self.group_blocks_of_type(episode, identifier)
ep_blocks = self.get_blocks_stored_in_episode(episode)
evt_blocks = [k for k in ep_blocks if k.identifier == identifier]
#compute events on each channel
n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
pre_events = np.sum(n_events[0:evt_channel – 1], dtype=int)
start = pre_events
end = start + n_events[evt_channel – 1]
expected_size = 4 * np.sum(n_events, dtype=int)
return self.load_bytes(data_blocks, dtype=’
Example 46
def load_encoded_spikes(self, episode, evt_channel, identifier):
“””
Return times stored as a 4-bytes integer
in the specified spike channel.
NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label.
These additiona bytes are appended trailing the times.
“””
# to load the requested spikes for the specified episode and event channel:
# get all the elphy blocks having as identifier ‘RSPK’ (or whatever)
all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier]
rspk_block = all_rspk_blocks[episode-1]
# RDATA(h?dI) REVT(NbVeV:I, NbEv:256I … spike data are 4byte integers
rspk_header = 4*( rspk_block.size – rspk_block.data_size-2 + len(rspk_block.n_events))
pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0)
# the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte)
start = rspk_header + (4*pre_events) + pre_events
end = start + 4*rspk_block.n_events[evt_channel-1]
raw = self.load_bytes( [rspk_block], dtype=’
# re-encoding after reading byte by byte
res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype=’
res.sort() # sometimes timings are not sorted
#print “load_encoded_data() – spikes:”,res
return res
Example 47
def get_spiketrain(self, episode, electrode_id):
“””
Return a :class:`Spike` which is a
descriptor of the specified spike channel.
“””
assert episode in range(1, self.n_episodes + 1)
assert electrode_id in range(1, self.n_spiketrains(episode) + 1)
# get some properties stored in the episode sub-block
block = self.episode_block(episode)
x_unit = block.ep_block.x_unit
x_unit_wf = getattr(block.ep_block, ‘x_unit_wf’, None)
y_unit_wf = getattr(block.ep_block, ‘y_unit_wf’, None)
# number of spikes in the entire episode
spk_blocks = [k for k in self.blocks if k.identifier == ‘RSPK’]
n_events = np.sum([k.n_events[electrode_id – 1] for k in spk_blocks], dtype=int)
# number of samples in a waveform
wf_sampling_frequency = 1.0 / block.ep_block.dX
wf_blocks = [k for k in self.blocks if k.identifier == ‘RspkWave’]
if wf_blocks :
wf_samples = wf_blocks[0].wavelength
t_start = wf_blocks[0].pre_trigger * block.ep_block.dX
else:
wf_samples = 0
t_start = 0
return ElphySpikeTrain(self, episode, electrode_id, x_unit, n_events, wf_sampling_frequency, wf_samples, x_unit_wf, y_unit_wf, t_start)
Example 48
def get_rspk_data(self, spk_channel):
“””
Return times stored as a 4-bytes integer
in the specified event channel.
“””
evt_blocks = self.get_blocks_of_type(‘RSPK’)
#compute events on each channel
n_events = np.sum([k.n_events for k in evt_blocks], dtype=int, axis=0)
pre_events = np.sum(n_events[0:spk_channel], dtype=int) # sum of array values up to spk_channel-1!!!!
start = pre_events + (7 + len(n_events))# rspk header
end = start + n_events[spk_channel]
expected_size = 4 * np.sum(n_events, dtype=int) # constant
return self.load_bytes(evt_blocks, dtype=’
# ———————————————————
# factories.py
Example 49
def __mmap_ncs_packet_headers(self, filename):
“””
Memory map of the Neuralynx .ncs file optimized for extraction of
data packet headers
Reading standard dtype improves speed, but timestamps need to be
reconstructed
“””
filesize = getsize(self.sessiondir + sep + filename) # in byte
if filesize > 16384:
data = np.memmap(self.sessiondir + sep + filename,
dtype=’
shape=((filesize – 16384) / 4 / 261, 261),
mode=’r’, offset=16384)
ts = data[:, 0:2]
multi = np.repeat(np.array([1, 2 ** 32], ndmin=2), len(data),
axis=0)
timestamps = np.sum(ts * multi, axis=1)
# timestamps = data[:,0] + (data[:,1] *2**32)
header_u4 = data[:, 2:5]
return timestamps, header_u4
else:
return None
Example 50
def __mmap_nev_file(self, filename):
“”” Memory map the Neuralynx .nev file “””
nev_dtype = np.dtype([
(‘reserved’, ‘
(‘system_id’, ‘
(‘data_size’, ‘
(‘timestamp’, ‘
(‘event_id’, ‘
(‘ttl_input’, ‘
(‘crc_check’, ‘
(‘dummy1’, ‘
(‘dummy2’, ‘
(‘extra’, ‘
(‘event_string’, ‘a128’),
])
if getsize(self.sessiondir + sep + filename) > 16384:
return np.memmap(self.sessiondir + sep + filename,
dtype=nev_dtype, mode=’r’, offset=16384)
else:
return None
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/134696.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...