大家好,又见面了,我是全栈君,祝每个程序员都可以多学几门语言。
1. Impala架构
图 1
Impala State Store: 跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注冊订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,重复注冊,当State Store又一次添�集群后,自己主动恢复正常,更新缓存数据)由于Impalad有State Store的缓存仍然能够工作,但会由于有些Impalad失效了,而已缓存数据无法更新,导致把运行计划分配给了失效的Impalad,导致查询失败。
CLI: 提供给用户查询使用的命令行工具(Impala Shell使用python实现),同一时候Impala还提供了Hue,JDBC, ODBC使用接口。
2. 与Hive的关系
图 2
3. Impala的查询处理过程
Impala的查询处理流程大概如图3所看到的:
图 3
PLAN FRAGMENT 0
PARTITION: UNPARTITIONED4:EXCHANGE
tuple ids: 1PLAN FRAGMENT 1
PARTITION: HASH_PARTITIONED: <slot 1>STREAM DATA SINK
EXCHANGE ID: 4
UNPARTITIONED3:AGGREGATE
| output: SUM(<slot 2>), SUM(<slot 3>)
| group by: <slot 1>
| tuple ids: 1
|
2:EXCHANGE
tuple ids: 1PLAN FRAGMENT 2
PARTITION: RANDOMSTREAM DATA SINK
EXCHANGE ID: 2
HASH_PARTITIONED: <slot 1>1:AGGREGATE
| output: SUM(id), COUNT(id)
| group by: id
| tuple ids: 1
|
0:SCAN HDFS
table=default.customer_small #partitions=1 size=193B
tuple ids: 0
4. Impala相对于Hive所使用的优化技术
5. Impala与Hive的异同
元数据:两者使用同样的元数据。
SQL解释处理:比較相似都是通过词法分析生成运行计划。
运行计划:
Hive: 依赖于MapReduce运行框架,运行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。假设一个Query会被编译成多轮MapReduce,则会有很多其它的写中间结果。因为MapReduce运行框架本身的特点,过多的中间过程会添加�整个Query的运行时间。
Impala: 把运行计划表现为一棵完整的运行计划树,能够更自然地分发运行计划到各个Impalad运行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。
数据流:
Hive: 採用推的方式,每个计算节点计算完毕后将数据主动推给兴许节点。
Impala: 採用拉的方式,兴许节点通过getNext主动向前面节点要数据,以此方式数据能够流式的返回给client,且仅仅要有1条数据被处理完,就能够马上展现出来,而不用等到所有处理完毕,更符合SQL交互式查询使用。
内存使用:
Hive: 在运行过程中假设内存放不下全部数据,则会使用外存,以保证Query能顺序运行完。每一轮MapReduce结束,中间结果也会写入HDFS中,相同因为MapReduce运行架构的特性,shuffle过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,当前版本号1.0.1是直接返回错误,而不会利用外存,以后版本号应该会进行改进。这使用得Impala眼下处理Query会受到一定的限制,不妨与Hive配合使用。Impala在多个阶段之间利用网络数据传输,在运行过程不会有写磁盘的操作(insert除外)。
调度:
Hive: 任务调度依赖于Hadoop的调度策略。
Impala: 调度由自己完毕,眼下仅仅有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器眼下还比較简单,在SimpleScheduler::GetBackend中能够看到,如今还没有考虑负载,网络IO状况等因素进行调度。但眼下Impala已经有对运行过程的性能统计分析,应该以后版本号会利用这些统计信息进行调度吧。
容错:
Hive: 依赖于Hadoop的容错能力。
Impala: 在查询过程中,没有容错逻辑,假设在运行过程中发生问题,则直接返回错误(这与Impala的设计有关,由于Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本非常低)。但从总体来看,Impala是能非常好的容错,全部的Impalad是对等的结构,用户能够向不论什么一个Impalad提交查询,假设一个Impalad失效,其上正在运行的全部Query都将失败,但用户能够又一次提交查询由其他Impalad取代运行,不会影响服务。对于State Store眼下仅仅有一个,但当State Store失效,也不会影响服务,每一个Impalad都缓存了State Store的信息,仅仅是不能再更新集群状态,有可能会把运行任务分配给已经失效的Impalad运行,导致本次Query失败。
适用面:
Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,由于不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
6. Impala的优缺点
长处:
- 支持SQL查询,高速查询大数据。
- 能够对已有数据进行查询,降低数据的载入,转换。
- 多种存储格式能够选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
- 能够与Hive配合使用。
缺点:
- 不支持用户定义函数UDF。
- 不支持text域的全文搜索。
- 不支持Transforms。
- 不支持查询期的容错。
- 对内存要求高。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/118725.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...