MapReduce 规划 六系列 MultipleOutputs采用

MapReduce 规划 六系列 MultipleOutputs采用

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

在前面的示例,输出文件名是默认:

_logs         part-r-00001  part-r-00003  part-r-00005  part-r-00007  part-r-00009  part-r-00011  part-r-00013  _SUCCESS
part-r-00000  part-r-00002  part-r-00004  part-r-00006  part-r-00008  part-r-00010  part-r-00012  part-r-00014

part-r-0000N

另一个_SUCCESS文件标志job执行成功。

另一个文件夹_logs。

可是实际情况中,我们有时候须要依据情况定制我的输出文件名称。

比方我要依据did的值分组,产生不同的输出文件。全部did出现次数在[0, 2)的都输出到a文件里。在[2, 4)的输出大b文件。其它输出到c文件。

这里涉及到的输出类是MultipleOutputs类。

以下是介绍怎样实现。

首先有一个小优化,为了避免每次执行时输入一长串命令,利用maven exec plugin,參考pom.xml配置例如以下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>org.freebird</groupId>
  <artifactId>mr1_example2</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>mr1_example2</name>
  <url>http://maven.apache.org</url>
  <dependencies>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-core</artifactId>
      <version>1.2.1</version>
    </dependency>
  </dependencies>
  <build>
    <plugins>
      <plugin>
        <groupId>org.codehaus.mojo</groupId>
        <artifactId>exec-maven-plugin</artifactId>
        <version>1.3.2</version>
        <executions>
          <execution>
            <goals>
              <goal>exec</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <executable>hadoop</executable>
          <arguments>
            <argument>jar</argument>
            <argument>target/mr1_example2-1.0-SNAPSHOT.jar</argument>
            <argument>org.freebird.LogJob</argument>
            <argument>/user/chenshu/share/logs</argument>
            <argument>/user/chenshu/share/output12</argument>
          </arguments>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

这样每次mvn clean package之后,执行mvn exec:exec命令就可以。

然后在LogJob.java文件加入几行代码:

package org.freebird;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.freebird.reducer.LogReducer;
import org.freebird.mapper.LogMapper;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



public class LogJob {                                                                                                                                                                                                
                                                                                                                                                                                                                     
    public static void main(String[] args) throws Exception {                                                                                                                                                        
        System.out.println("args[0]:" + args[0]);                                                                                                                                                                    
        System.out.println("args[1]:" + args[1]);                                                                                                                                                                    
                                                                                                                                                                                                                     
        Configuration conf = new Configuration();                                                                                                                                                                    
        Job job = new Job(conf, "sum_did_from_log_file");                                                                                                                                                            
        job.setJarByClass(LogJob.class);                                                                                                                                                                             
                                                                                                                                                                                                                     
        job.setMapperClass(org.freebird.mapper.LogMapper.class);                                                                                                                                                     
        job.setReducerClass(org.freebird.reducer.LogReducer.class);                                                                                                                                                  
                                                                                                                                                                                                                     
        job.setOutputKeyClass(Text.class);                                                                                                                                                                           
        job.setOutputValueClass(IntWritable.class);                                                                                                                                                                  
                                                                                                                                                                                                                     
        MultipleOutputs.addNamedOutput(job, "a", TextOutputFormat.class, Text.class, IntWritable.class);                                                                                                             
        MultipleOutputs.addNamedOutput(job, "b", TextOutputFormat.class, Text.class, Text.class);                                                                                                                    
        MultipleOutputs.addNamedOutput(job, "c", TextOutputFormat.class, Text.class, Text.class);                                                                                                                    
                                                                                                                                                                                                                     
        FileInputFormat.addInputPath(job, new Path(args[0]));                                                                                                                                                        
        FileOutputFormat.setOutputPath(job, new Path(args[1]));                                                                                                                                                      
                                                                                                                                                                                                                     
        System.exit(job.waitForCompletion(true) ? 0 : 1);                                                                                                                                                            
    }                                                                                                                                                                                                                
}

MultipleOutputs.addNamedOutput 函数被调用了三次,设置了文件名称为a,b和c。最后两个參数各自是output key和output value类型。应该和job.setOutputKeyClass以及job.setOutputValueClass保持一致。

最后改动reducer类的代码:

public class LogReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    private IntWritable result = new IntWritable();

    private MultipleOutputs outputs;

    @Override
    public void setup(Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer:::setup method");
        outputs = new MultipleOutputs(context);
    }

    @Override
    public void cleanup(Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer:::cleanup method");
        outputs.close();
    }

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context) throws IOException, InterruptedException {
        System.out.println("enter LogReducer::reduce method");
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        System.out.println("key: " + key.toString() + " sum: " + sum);                                                                                             
        if ((sum < 2) && (sum >= 0)) {
            outputs.write("a", key, sum);
        } else if (sum < 4) {
            outputs.write("b", key, sum);
        } else {
            outputs.write("c", key, sum);
        }
    }
}

依据同样key(did)sum的结果大小,写入到不同的文件里。执行后观察一下结果:

[chenshu@hadoopMaster output12]$ ls
a-r-00000  a-r-00004  a-r-00008  a-r-00012  b-r-00001  b-r-00005  b-r-00009  b-r-00013  c-r-00002  c-r-00006  c-r-00010  c-r-00014     part-r-00002  part-r-00006  part-r-00010  part-r-00014
a-r-00001  a-r-00005  a-r-00009  a-r-00013  b-r-00002  b-r-00006  b-r-00010  b-r-00014  c-r-00003  c-r-00007  c-r-00011  _logs         part-r-00003  part-r-00007  part-r-00011  _SUCCESS
a-r-00002  a-r-00006  a-r-00010  a-r-00014  b-r-00003  b-r-00007  b-r-00011  c-r-00000  c-r-00004  c-r-00008  c-r-00012  part-r-00000  part-r-00004  part-r-00008  part-r-00012
a-r-00003  a-r-00007  a-r-00011  b-r-00000  b-r-00004  b-r-00008  b-r-00012  c-r-00001  c-r-00005  c-r-00009  c-r-00013  part-r-00001  part-r-00005  part-r-00009  part-r-00013

打开随意的a,b和c开头的文件,查看值果然是如此

5371700bc7b2231db03afeb0        6
5371700cc7b2231db03afec0        7
5371701cc7b2231db03aff8d        6
5371709dc7b2231db03b0136        6
537170a0c7b2231db03b01ac        6
537170a6c7b2231db03b01fc        6
537170a8c7b2231db03b0217        6
537170b3c7b2231db03b0268        6
53719aa9c7b2231db03b0721        6
53719ad0c7b2231db03b0731        4

使用MultipleOutputs依据sum值对设备ID进行分组成功了。

MapReduce仍然会默认生使part….档,不要紧,它们是空文件。

版权声明:本文博主原创文章,博客,未经同意不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/116998.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • zuul网关整合swagger

    zuul网关整合swaggerzuul整合swagger网关maven依赖<dependency><groupId>com.spring4all</groupId><artifactId>swagger-spring-boot-starter</artifactId><version>1.7.0.RELEASE</version></depende

  • 记录自建ALIDDNS服务域名解析和外网访问

    记录自建ALIDDNS服务域名解析和外网访问本文参考https://blog.csdn.net/y1534414425/article/details/90699532除上文外要补充的有AccessKeyID和AccessKeySecret可以使用子账号只需要添加一个AliyunECSReadOnlyAccess权限就可以了需要路由器上虚拟机服务设计端口映射完事就可外网访问了…

  • ER图是什么?「建议收藏」

    ER图是什么?「建议收藏」ER图分为实体、属性、关系三个核心部分。实体是长方形体现,而属性则是椭圆形,关系为菱形。ER图的实体(entity)即数据模型中的数据对象,例如人、学生、音乐都可以作为一个数据对象,用长方体来表示,每个实体都有自己的实体成员(entitymember)或者说实体对象(entityinstance),例如学生实体里包括张三、李四等,实体成员(entitymember)/实体实例(entityinstance)不需要出现在ER图中。ER图的属性(attribute)即数据对象所具有的属

  • 灰色关联度矩阵模型及其MATLAB实现[通俗易懂]

    灰色关联度矩阵模型及其MATLAB实现[通俗易懂]灰色关联度矩阵是灰色系统另一个非常重要的领域,通常用于分析向量与向量之间或矩阵与矩阵之间的关联度,其实用性非常强。

  • Linux系统结构详解

    Linux系统结构详解Linux系统一般有4个主要部分:内核、shell、文件系统和应用程序。内核、shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。部分层次结构如图1-1所示。1.linux内核Linux内核是世界上最大的开源项目之一,内核是与计算机硬件接口的易替换软件的最低级别。它负责将所有以“用户模式”运行的应用程…

  • 数据库设计 ER图

    数据库设计 ER图一、ER图简介ER图,简单来说,E是实体,实体有一组属性;R是关系。找打系统中的实体以及实体关系就可以绘制出ER图了。例如,下图是网上找到的ER图,矩形的是实体,椭圆是属性,实体何实体时间的关系用菱形,关系也有熟悉,例如,学生选修课程,有成绩属性,当然如果系统需要,也可以记录选修的时间等属性信息。认真看下,你会发现ER图理解起来还是比较容易的二、ER图绘制常见问题但是真的落实到自己绘制,很多同学就会遇到困难。下面我们通过反例来学习ER图1.反例1区分功能和关系.

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号