HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP「建议收藏」

HDU ACM 1054 Strategic Game 二分图最小顶点覆盖?树形DP

大家好,又见面了,我是全栈君。

分析:这里使用树形DP做。

1、最小顶点覆盖做法:最小顶点覆盖 == 最大匹配(双向图)/2。

2、树形DP:
dp[i][0]表示i为根节点,而且该节点不放,所需的最少的点数。
dp[i][1]表示i为根节点,而且该节点放,所须要的最少的点数。

dp[i][0]=sum(dp[son[i][j]][1]) 该点不放。则它的儿子节点必须都放,仅仅有这样之间的边才干够被覆盖。
dp[i][1]=sum(min(dp[son[i][j]][0],dp[son[i][j]][1])) 该点放的话,则它的儿子节点有两种决策。放或不放,取min就可以。

#include<iostream>
#include<vector>
#include<limits.h>
using namespace std;

#define N 1505
int dp[N][2];    //dp[i]表示以i为根节点时所须要的最小点数
int f[N];        //用来记录父节点
vector<int> son[N]; //记录儿子节点

int min(int x,int y)
{
	return x<y?

x:y;}int dfs(int pos,int v){ int sum,i; if(dp[pos][v]!=INT_MIN) return dp[pos][v]; sum=v; for(i=0;i<son[pos].size();i++) if(v==1) //当前节点选 sum+=min(dfs(son[pos][i],0),dfs(son[pos][i],1)); else sum+=dfs(son[pos][i],1);//当前节点不选,子节点必选 dp[pos][v]=sum; return sum;}int main(){ int ans,n,i,x,m,j,t; while(scanf("%d",&n)==1) { for(i=0;i<n;i++) { son[i].clear(); f[i]=i; dp[i][0]=dp[i][1]=INT_MIN; } for(i=0;i<n;i++) { scanf("%d:(%d)",&x,&m); for(j=0;j<m;j++) { scanf("%d",&t); son[x].push_back(t); f[t]=x; } } for(i=0;i<n;i++) if(f[i]==i) //找到根节点 { ans=min(dfs(i,0),dfs(i,1)); break; } printf("%d\n",ans); } return 0;}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/116417.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号