pytorch交叉熵损失函数计算_pytorch loss不下降

pytorch交叉熵损失函数计算_pytorch loss不下降MSE:MeanSquaredError(均方误差)含义:均方误差,是预测值与真实值之差的平方和的平均值,即:MSE=1N∑i=1n(xi−yi)2\begin{aligned}MSE=\cfrac{1}{N}\sum_{i=1}^n(x_i-y_i)^2\end{aligned}MSE=N1​i=1∑n​(xi​−yi​)2​  但是,在具体的应用中跟定义稍有不同。主要差别是参数的设置,在torch.nn.MSELoss中有一个reduction参数。reduction是维度要不要

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

MSE: Mean Squared Error(均方误差
含义:均方误差,是预测值与真实值之差的平方和的平均值,即:
M S E = 1 N ∑ i = 1 n ( x i − y i ) 2 \begin{aligned} MSE =\cfrac {1}{N}\sum_{i=1}^n(x_i-y_i)^2 \end{aligned} MSE=N1i=1n(xiyi)2
  但是,在具体的应用中跟定义稍有不同。主要差别是参数的设置,在torch.nn.MSELoss中有一个reduction参数。reduction是维度要不要缩减以及如何缩减主要有三个选项:

  • ‘none’:no reduction will be applied.
  • ‘mean’: the sum of the output will be divided by the number of elements in the output.
  • ‘sum’: the output will be summed.

  如果不设置reduction参数,默认是’mean’
下面看个例子:

import torch
import torch.nn as nn
 
a = torch.tensor([[1, 2], 
				  [3, 4]], dtype=torch.float)
				  
b = torch.tensor([[3, 5], 
				  [8, 6]], dtype=torch.float)
 
loss_fn1 = torch.nn.MSELoss(reduction='none')
loss1 = loss_fn1(a.float(), b.float())
print(loss1)   # 输出结果:tensor([[ 4., 9.],
               # [25., 4.]])
 
loss_fn2 = torch.nn.MSELoss(reduction='sum')
loss2 = loss_fn2(a.float(), b.float())
print(loss2)   # 输出结果:tensor(42.)
 
 
loss_fn3 = torch.nn.MSELoss(reduction='mean')
loss3 = loss_fn3(a.float(), b.float())
print(loss3)   # 输出结果:tensor(10.5000)

  在loss1中是按照原始维度输出,即对应位置的元素相减然后求平方;loss2中是对应位置求和;loss3中是对应位置求和后取平均。
  除此之外,torch.nn.MSELoss还有一个妙用,求矩阵的F范数(F范数详解)当然对于所求出来的结果还需要开方。

参考文献

[1]pytorch的nn.MSELoss损失函数
[2]状态估计的基本概念(3)最小均方估计和最小均方误差估计

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192133.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号