计算机负数补码_负数用补码表示如何理解

计算机负数补码_负数用补码表示如何理解在计算机系统中,数值一律用补码来表示(存储)。主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。2、补码与原码的转换过程几乎是相同的。数值的补码表示也分两种情况:(1)正数的补码:与原码相同。例如,+9的补码是00001001。(2)负数的补码:符号位为1

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定
 

在计算机系统中,数值一律用补码来表示(存储)。

主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补

码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。

2、补码与原码的转换过程几乎是相同的。

数值的补码表示也分两种情况:

(1)正数的补码:与原码相同。

例如,+9的补码是00001001。

(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。

例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码

0000111按位取反为1111000;再加1,所以-7的补码是11111001。

已知一个数的补码,求原码的操作分两种情况:

(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。

(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取

反,然后再整个数加1。

例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负

数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。

在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”

的概念:

“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范

围,即都存在一个“模”。例如:

时钟的计量范围是0~11,模=12。

表示n位的计算机计量范围是0~2(n)-1,模=2(n)。【注:n表示指数】

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的

余数。任何有模的计量器,均可化减法为加法运算。

例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:

一种是倒拨4小时,即:10-4=6

另一种是顺拨8小时:10+8=12+6=6

在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。

对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特

性。共同的特点是两者相加等于模。

对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再

加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的

模为2(8)。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以

了。把补数用到计算机对数的处理上,就是补码。

另外两个概念

一的补码(one’s complement) 指的是正数=原码,负数=反码

而二的补码(two’s complement) 指的就是通常所指的补码

数在计算机中是以二进制形式表示的。

数分为有符号数和无符号数。

原码、反码、补码都是有符号定点数的表示方法。

一个有符号定点数的最高位为符号位,0是正,1是副。

以下都以8位整数为例,

原码就是这个数本身的二进制形式。

例如

0000001 就是+1

1000001 就是-1

正数的反码和补码都是和原码相同。

负数的反码是将其原码除符号位之外的各位求反

[-3]反=[10000011]反=11111100

负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。

[-3]补=[10000011]补=11111101

一个数和它的补码是可逆的。

为什么要设立补码呢?

第一是为了能让计算机执行减法:

[a-b]补=a补+(-b)补

第二个原因是为了统一正0和负0

正零:00000000

负零:10000000

这两个数其实都是0,但他们的原码却有不同的表示。

但是他们的补码是一样的,都是00000000

特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)

[10000000]补

=[10000000]反+1

=11111111+1

=(1)00000000

=00000000(最高位溢出了,符号位变成了0)

有人会问

10000000这个补码表示的哪个数的补码呢?

其实这是一个规定,这个数表示的是-128

所以n位补码能表示的范围是

-2^(n-1)到2^(n-1)-1

比n位原码能表示的数多一个

又例:

1011

原码:01011

反码:01011 //正数时,反码=原码

补码:01011 //正数时,补码=原码

-1011

原码:11011

反码:10100 //负数时,反码为原码取反

补码:10101 //负数时,补码为原码取反+1

0.1101

原码:0.1101

反码:0.1101 //正数时,反码=原码

补码:0.1101 //正数时,补码=原码

-0.1101

原码:1.1101

反码:1.0010 //负数时,反码为原码取反

补码:1.0011 //负数时,补码为原码取反+1

总结:

在计算机内,定点数有3种表示法:原码、反码和补码

所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

1、原码、反码和补码的表示方法

(1)     原码:在数值前直接加一符号位的表示法。

例如:       符号位   数值位

[+7]原=    0     0000111   B

[-7]原=    1     0000111   B

      注意:a. 数0的原码有两种形式:

                    [+0]原=00000000B     [-0]原=10000000B

                b. 8位二进制原码的表示范围:-127~+127

2)反码:

      正数:正数的反码与原码相同。

      负数:负数的反码,符号位为“1”,数值部分按位取反。

例如: 符号位    数值位

      [+7]反=   0    0000111   B

      [-7]反=   1    1111000   B

注意:a. 数0的反码也有两种形式,即

               [+0]反=00000000B

               [- 0]反=11111111B

           b. 8位二进制反码的表示范围:-127~+127

3)补码的表示方法

1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。

同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。

2)补码的表示: 正数:正数的补码和原码相同。

     负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。

例如:   符号位 数值位

[+7]补=    0    0000111   B

       [-7]补=    1    1111001   B

补码在微型机中是一种重要的编码形式,请注意:

a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。

b.与原码、反码不同,数值0的补码只有一个,即        [0]补=00000000B。

c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/231326.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • sqlserver 自动初始化从节点数据

    sqlserver 自动初始化从节点数据

    2021年11月27日
  • ST7789V+初始化代码调

    MyfirstblogonCSDN本文简单写一下本次调屏经过遇到的问题和解决方法,主要是怕以后遇到同样问题的时候又忘记了~1、屏分辨率是240×320,接口是16bitparalledatabusfor8080seriescpu,就是16位并口再加WR,RD,CS,RS接口,屏的复位可以采用RC上电复位电路。2、cpu这边输出的信号是320×240的,这里没写错,输

  • java获取Date时间的各种方式汇总「建议收藏」

    java获取Date时间的各种方式汇总「建议收藏」1. 常用的时间获取方式public class DateUtils {   /**   * 获取时间戳   * 输出结果:1438692801766   */  @Test  public void getTimeStamp() {    Date date = new Date();    long times = date.getTime();    System.o…

  • 鸿蒙系统v30能用吗_v30pro升级鸿蒙系统使用感受

    鸿蒙系统v30能用吗_v30pro升级鸿蒙系统使用感受鸿蒙鸿蒙发布在gitee上https://gitee.com/openHarmony入门指导,以Hi3516DV300为例https://gitee.com/openharmony/docs/tree/master/quick-start搭建环境在ubuntu18.4上,环境搭建可参考gitee上的入门的指导,编译顺利通过后,回头重点理一下:安装Pythonsudoaptinstall-ypythonsudoaptinstall-ypython3下载编译工具w

  • NSGA2 算法MATLAB完整代码 中文注释详解

    NSGA2 算法MATLAB完整代码 中文注释详解2019.7.17很意外本人这篇文章受到很多人的关注,在此把源码贴出来供大家更好的理解学习。https://download.csdn.net/download/joekepler/10590751========================分割=====================================本人最近研究NSGA2算法,网上有很多示例代码,但是基本没有…

  • HttpSession详解「建议收藏」

    HttpSession详解「建议收藏」HttpSession服务端的技术服务器会为每一个用户创建一个独立的HttpSessionHttpSession原理当用户第一次访问Servlet时,服务器端会给用户创建一个独立的Sessi

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号