裴蜀定理简单应用「建议收藏」

裴蜀定理简单应用「建议收藏」裴蜀定理定理内容:设aaa,bbb是不全为000的整数,则存在整数xxx,yyy使得a⋅xa\cdotxa⋅x+++b⋅yb\cdotyb⋅y=gcd⁡(x,y)\gcd(x,y)gcd(x,y)。定理简单应用:例题:洛谷p4549https://www.luogu.com.cn/problem/P4549思路分析:给定一个序列,求一个SSS满足S=S=S=∑i=1n\sum\limits_{i=1}^ni=1∑n​Ai×XiA_i\timesX_iAi​×Xi​,而

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

裴蜀定理

定理内容:

  • a a a, b b b是不全为 0 0 0的整数,则存在整数 x x x y y y使得 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)

定理简单应用:

例题:

洛谷p4549

https://www.luogu.com.cn/problem/P4549

思路分析:
  • 给定一个序列,求一个 S S S满足 S = S = S= ∑ i = 1 n \sum\limits_{i=1}^n i=1n A i × X i A_i\times X_i Ai×Xi,而且要求满足这个条件的S的最小值,这时我们想到对于任意不为 0 0 0的整数都有 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)
  • 那么对这个定理的另一个解读就是总有 x x x y y y使得 a ⋅ x a\cdot x ax + + + b ⋅ y b\cdot y by = d d d,且 gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) | d d d
  • 因此我们想到这个定理是否可以推广成 n n n个数呢?答案是肯定的。
  • 所以此题即要我们求这一个序列的 gcd ⁡ \gcd gcd即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int a[100];
int gcd(int a, int b)
{ 
   
        if (b == 0)
                return a;
        else
                return gcd(b, a % b);
}
int main()
{ 
   
        int n;
        cin >> n;
        cin >> a[0];
        int ans = a[0];
        for (int i = 1; i < n; i++)
        { 
   
                cin >> a[i];
                ans = gcd(a[i], ans);
        }
        cout << abs(ans) << endl;
}

Jetbrains全家桶1年46,售后保障稳定

Codeforces Round #290 (Div. 2) D. Fox And Jumping

https://www.luogu.com.cn/problem/CF510D

思路分析:
  • 要到达每一格,那么我们就要使选上的数满足 gcd ⁡ \gcd gcd = 1。
  • 在这里我们用到了dp,也就是说要选上的数的价格(使 gcd ⁡ \gcd gcd = tmp)和之前的满足( gcd ⁡ \gcd gcd = tmp)的价格取最少即可。然后我们需要对每个数进行配对(不止是两两配对),所以我们想到了用一个map来储存下标为当前最大公因子数,value为所花价值来操作。
  • 具体细节见代码注释
代码如下:
#include <bits/stdc++.h>
using namespace std;
map<int, int> dp;
int l[301];
int c[301];
int gcd(int a, int b)
{ 

if (b == 0)
return a;
else
return gcd(b, a % b);
}
//求最大公因子
int main()
{ 

int n;
scanf("%d", &n);
dp.clear();
//容器清空
for (int i = 1; i <= n; i++)
{ 

scanf("%d", &l[i]);
}
//读入数
for (int i = 1; i <= n; i++)
{ 

scanf("%d", &c[i]);
}
//读入选择该数的费用
dp[0] = 0;
//初始化
for (int i = 1; i <= n; i++)
{ 

map<int, int>::iterator it = dp.begin();
//用迭代器
for (; it != dp.end(); it++)
{ 

int tmp = gcd(it->first, l[i]);
//tmp即为选上的这个数和map里已经选好的数进行gcd运算
if (dp.count(tmp))
{ 

dp[tmp] = min(dp[tmp], it->second + c[i]);
//就是说要取到gcd为tmp时的最小花费
}
else
dp[tmp] = it->second + c[i];
//之前数配对时没有出现过的gcd,因此直接储存
}
}
if (dp.count(1))
cout << dp[1] << endl;
//最后由裴蜀定理可知我们要的是gcd = 1 的最小花费
else
cout << -1 << endl;
//没有就代表无论怎么选gcd都不为1,那么总有格子跳不到
return 0;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230606.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • phpstome2021激活码[在线序列号]

    phpstome2021激活码[在线序列号],https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • ubuntu上安装gcc

    ubuntu上安装gcc首先我是直接根据别人博客来的:sudoaptupdatesudoaptinstallbuild-essential主要是说build-essential中包含了GNU编辑器集合

  • 简单的激光干涉测距仪原理——为什么只能测量相对距离「建议收藏」

    简单的激光干涉测距仪原理——为什么只能测量相对距离「建议收藏」为什么要用激光来测量距离呢?这一切都是因为激光的波长很短,同频率的光波叠加会在波长级的尺度上产生周期性的变化,因此用激光测量距离时,精度是波长级别的,这也是为什么通常选用波长较短的激光进行测距。将同一光束分成两束,其中一束状态不变,另一束经物体反射后与第一束合并,以光电探测器进行探测。物体每移动半个波长,探测器探测到的信号就会出现一个极值,通过数极值的数量就可以知道物体移动了多少。…

  • 测试显卡矿卡用什么软件,3分钟看懂:AMD二手矿卡简明鉴别、检测教程,从此脱坑不求人…「建议收藏」

    测试显卡矿卡用什么软件,3分钟看懂:AMD二手矿卡简明鉴别、检测教程,从此脱坑不求人…「建议收藏」3分钟看懂:AMD二手矿卡简明鉴别、检测教程,从此脱坑不求人2020-03-2700:10:00135点赞716收藏90评论创作立场声明:Tony哥的矿卡日记二手矿卡坑太深,手握秘籍不求人AMD自2016年中发布Polaris系列GPU至今,长达四年的时间里,一代又一代的RX470、480、570、580等显示卡进入暗无天日的区块链矿场,挥洒着血泪和青春。在经历一次次矿难之后,貌似廉价的二手矿卡…

  • Maven 配置环境变量后无法立刻生效「建议收藏」

    Maven 配置环境变量后无法立刻生效「建议收藏」    最近在系统学习Maven,在解压完Maven,并配置环境变量后,在黑窗口用mvn-n查询不到。   仔细研究后发现,我在配置环境变量之前就打开了黑窗口,导致无法查到最新的,所以只要重新打开黑窗口就能查到了。…

  • 代码也浪漫——Python烟花秀[通俗易懂]

    代码也浪漫——Python烟花秀[通俗易懂]下午太困,无意中看到一段用Tkinter库写的放烟花的程序,就跟着跑了一遍。设计理念:通过让画面上一个粒子分裂为X数量的粒子来模拟爆炸效果。粒子会发生“膨胀”,意思是它们会以恒速移动且相互之间的角度相等。这样就能让我们以一个向外膨胀的圆圈形式模拟出烟花绽放的画面。经过一定时间后,粒子会进入“自由落体”阶段,也就是由于重力因素它们开始坠落到地面,仿若绽放后熄灭的烟花。 首先我们写一个粒子…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号