elf文件解析器_elf文件下载

elf文件解析器_elf文件下载前两天网上投递了简历,面试了一家C++公司,然后对面负责人给我发了一份笔试题,题目是:请写出一个ELF文件解析器,需要能打印出所有segments和sections,并列出每个section和segment的映射关系。首先了解elf是什么,它的结构是怎么样的,然后去读一下别人的源码,读懂之后,自己开始编码。源码如下(”elf.h”头文件见后文),它会报warning,但是貌似不太影…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

前两天网上投递了简历,面试了一家C++公司,然后对面负责人给我发了一份笔试题,题目是:

请写出一个ELF文件解析器, 需要能打印出所有segmentssections,并列出每个sectionsegment的映射关系。

首先了解elf是什么,它的结构是怎么样的,然后去读一下别人的源码,读懂之后,自己开始编码。

源码如下(”elf.h” 头文件见后文),它会报warning,但是貌似不太影响最后结果:

#include<stdlib.h>
#include<stdio.h>
#include "elf.h"

int main(int argc, char* argv[])
{
    // 参数错误
    if(argc < 2)
    {
        printf("invalid arguments\n");
        exit(0);
    }

    // 打开文件
    FILE *fp;
    fp = fopen(argv[1], "r");
    if (NULL == fp)
    {
        printf("fail to open the file");
        exit(0);
    }

    // 解析head
    Elf64_Ehdr elf_head;
    int shnum, a;

    // 读取 head 到elf_head
    a = fread(&elf_head, sizeof(Elf64_Ehdr), 1, fp);
    if (0 == a)
    {
        printf("fail to read head\n");
        exit(0);
    }

    // 判断elf文件类型
    if(elf_head.e_ident[0] != 0x7F ||
        elf_head.e_ident[1] != 'E' ||
        elf_head.e_ident[2] != 'L' ||
        elf_head.e_ident[3] != 'F')
    {
        printf("Not a ELF file\n");
        exit(0);
    }

    // 解析section 分配内存 section * 数量
    Elf64_Shdr *shdr = (Elf64_Shdr*)malloc(sizeof(Elf64_Shdr) * elf_head.e_shnum);
    if (NULL == shdr)
    {
        printf("shdr malloc failed\n");
        exit(0);
    }

    // 设置fp偏移量 offset
    a = fseek(fp, elf_head.e_shoff, SEEK_SET);
    if(0 != a)
    {
        printf("\nfaile to fseek\n");
        exit(0);
    }

    // 读取section 到 shdr, 大小为shdr * 数量
    a = fread(shdr, sizeof(Elf64_Shdr) * elf_head.e_shnum, 1, fp);
    if (0 == a)
    {
        printf("\nfail to read section\n");
        exit(0);
    }

    // 重置指针位置
    rewind(fp);

    // 将fp指针移到 字符串表偏移位置处
    fseek(fp, shdr[elf_head.e_shstrndx].sh_offset, SEEK_SET);
    
    // 第e_shstrndx项是字符串表 定义 字节 长度 char类型 数组
    char shstrtab[shdr[elf_head.e_shstrndx].sh_size];
    char *temp = shstrtab;

    // 读取内容
    a = fread(shstrtab, shdr[elf_head.e_shstrndx].sh_size, 1, fp);
    if (0 == a)
    {
        printf("\nfaile to read\n");
    }

    // printf("\n\节的信息: \n");
    // 遍历
    // for (int i = 0; i < elf_head.e_shnum; i++)
    // {
    // temp = shstrtab;
    // temp = temp + shdr[i].sh_name;
    // printf("节的名称: %s\n", temp);
    // printf("节首的偏移: %x\n", shdr[i].sh_offset);
    // printf("节的大小: %x\n", shdr[i].sh_size);
    // printf("节尾的地址: %x\n", shdr[i].sh_offset + shdr[i].sh_size);
    // printf("\n");
    // }


    // 解析 segment
    Elf64_Phdr *phdr = (Elf64_Phdr*)malloc(sizeof(Elf64_Phdr) * elf_head.e_phnum);
    a = fseek(fp, elf_head.e_phoff, SEEK_SET);
    a = fread (phdr, sizeof(Elf64_Phdr) * elf_head.e_phnum, 1, fp);
    rewind(fp);
    fseek(fp, phdr[elf_head.e_shentsize].p_offset, SEEK_SET);
    char phstrtab[phdr[elf_head.e_shentsize].p_filesz];
    a = fread(phstrtab, phdr[elf_head.e_shentsize].p_filesz, 1, fp);
    printf("\n\n段的信息:\n");

    for (int i = 0; i < elf_head.e_phnum; i++)
    {
        printf("%d: \n", i);
        printf(" 该段首相对偏移: %x \n", phdr[i].p_offset);
        printf(" 该段的大小: %x \n", phdr[i].p_memsz);
        printf(" 该段尾相对偏移: %x \n", phdr[i].p_memsz + phdr[i].p_offset);
        printf(" *该段包含的节有:\n");

        for (int j = 0;j < elf_head.e_shnum; j++)
        {
            if (
                (shdr[j].sh_offset > phdr[i].p_offset) && 
                ( (shdr[j].sh_offset + shdr[j].sh_size) < (phdr[i].p_offset + phdr[i].p_memsz) )
               )
            {
                temp = shstrtab;
                temp = temp + shdr[j].sh_name;

                printf(" 节的名称: %s\n", temp);
                printf(" 节首的偏移: %x\n", shdr[j].sh_offset);
                printf(" 节的大小: %x\n", shdr[j].sh_size);
                printf(" 节尾的地址: %x\n", shdr[j].sh_offset + shdr[j].sh_size);
                printf("\n");
            }
        }    
        printf("\n");
    }

    printf("\n");
    return 0;
}

Jetbrains全家桶1年46,售后保障稳定

#include<stdlib.h>

#include<stdio.h>

#include “elf.h”

 

int main(int argc, char* argv[])

{

// 参数错误

if(argc < 2)

{

printf(“invalid arguments\n”);

exit(0);

}

 

// 打开文件

FILE *fp;

fp = fopen(argv[1], “r”);

if (NULL == fp)

{

printf(“fail to open the file”);

exit(0);

}

 

// 解析head

Elf64_Ehdr elf_head;

int shnum, a;

// 读取 head 到elf_head

a = fread(&elf_head, sizeof(Elf64_Ehdr), 1, fp);

if (0 == a)

{

printf(“fail to read head\n”);

exit(0);

}

 

// 判断elf文件类型

if(elf_head.e_ident[0] != 0x7F ||

elf_head.e_ident[1] != ‘E’ ||

elf_head.e_ident[2] != ‘L’ ||

elf_head.e_ident[3] != ‘F’)

{

printf(“Not a ELF file\n”);

exit(0);

}

 

// 解析section 分配内存 section * 数量

Elf64_Shdr *shdr = (Elf64_Shdr*)malloc(sizeof(Elf64_Shdr) * elf_head.e_shnum);

if (NULL == shdr)

{

printf(“shdr malloc failed\n”);

exit(0);

}

// 设置fp偏移量 offset

a = fseek(fp, elf_head.e_shoff, SEEK_SET);

if(0 != a)

{

printf(“\nfaile to fseek\n”);

exit(0);

}

 

// 读取section 到 shdr, 大小为shdr * 数量

a = fread(shdr, sizeof(Elf64_Shdr) * elf_head.e_shnum, 1, fp);

if (0 == a)

{

printf(“\nfail to read section\n”);

exit(0);

}

 

// 重置指针位置

rewind(fp);

// 将fp指针移到 字符串表偏移位置处

fseek(fp, shdr[elf_head.e_shstrndx].sh_offset, SEEK_SET);

 

// 第e_shstrndx项是字符串表 定义 字节 长度 char类型 数组

char shstrtab[shdr[elf_head.e_shstrndx].sh_size];

char *temp = shstrtab;

// 读取内容

a = fread(shstrtab, shdr[elf_head.e_shstrndx].sh_size, 1, fp);

if (0 == a)

{

printf(“\nfaile to read\n”);

}

// printf(“\n\节的信息: \n”);

// 遍历

// for (int i = 0; i < elf_head.e_shnum; i++)

// {

// temp = shstrtab;

// temp = temp + shdr[i].sh_name;

// printf(“节的名称: %s\n”, temp);

// printf(“节首的偏移: %x\n”, shdr[i].sh_offset);

// printf(“节的大小: %x\n”, shdr[i].sh_size);

// printf(“节尾的地址: %x\n”, shdr[i].sh_offset + shdr[i].sh_size);

// printf(“\n”);

// }

 

// 解析 segment

Elf64_Phdr *phdr = (Elf64_Phdr*)malloc(sizeof(Elf64_Phdr) * elf_head.e_phnum);

a = fseek(fp, elf_head.e_phoff, SEEK_SET);

a = fread (phdr, sizeof(Elf64_Phdr) * elf_head.e_phnum, 1, fp);

 

rewind(fp);

fseek(fp, phdr[elf_head.e_shentsize].p_offset, SEEK_SET);

 

char phstrtab[phdr[elf_head.e_shentsize].p_filesz];

a = fread(phstrtab, phdr[elf_head.e_shentsize].p_filesz, 1, fp);

 

printf(“\n\n段的信息:\n”);

for (int i = 0; i < elf_head.e_phnum; i++)

{

printf(“%d: \n”, i);

printf(” 该段首相对偏移: %x \n”, phdr[i].p_offset);

printf(” 该段的大小: %x \n”, phdr[i].p_memsz);

printf(” 该段尾相对偏移: %x \n”, phdr[i].p_memsz + phdr[i].p_offset);

printf(” *该段包含的节有:\n”);

for (int j = 0;j < elf_head.e_shnum; j++)

{

if ((shdr[j].sh_offset > phdr[i].p_offset) && ((shdr[j].sh_offset + shdr[j].sh_size) < (phdr[i].p_offset + phdr[i].p_memsz)))

{

temp = shstrtab;

temp = temp + shdr[j].sh_name;

printf(” 节的名称: %s\n”, temp);

printf(” 节首的偏移: %x\n”, shdr[j].sh_offset);

printf(” 节的大小: %x\n”, shdr[j].sh_size);

printf(” 节尾的地址: %x\n”, shdr[j].sh_offset + shdr[j].sh_size);

printf(“\n”);

}

}

printf(“\n”);

 

}

printf(“\n”);

return 0;

}

 

 

这里用到了一个头文件 “elf.h” ,里面定义了elf文件结构的各种数据结构,能够使解析elf的过程中更加方便:

#ifndef _QEMU_ELF_H

#define _QEMU_ELF_H

#include <inttypes.h>

/* 32-bit ELF base types. */

 

/* 字节 uint8_t

2字节 uint16_t

4字节 uint32_t

8字节 uint64_t */

typedef uint32_t Elf32_Addr;

typedef uint16_t Elf32_Half;

typedef uint32_t Elf32_Off;

typedef int32_t Elf32_Sword;

typedef uint32_t Elf32_Word;

/* 64-bit ELF base types. */

typedef uint64_t Elf64_Addr;

typedef uint16_t Elf64_Half;

typedef int16_t  Elf64_SHalf;

typedef uint64_t Elf64_Off;

typedef int32_t  Elf64_Sword;

typedef uint32_t Elf64_Word;

typedef uint64_t Elf64_Xword;

typedef int64_t Elf64_Sxword;

/* These constants are for the segment types stored in the image headers */

#define PT_NULL 0

#define PT_LOAD 1

#define PT_DYNAMIC 2

#define PT_INTERP 3

#define PT_NOTE 4

#define PT_SHLIB 5

#define PT_PHDR 6

#define PT_LOPROC 0x70000000

#define PT_HIPROC 0x7fffffff

#define PT_MIPS_REGINFO 0x70000000

#define PT_MIPS_OPTIONS 0x70000001

/* Flags in the e_flags field of the header */

/* MIPS architecture level. */

#define EF_MIPS_ARCH_1  0x00000000  /* -mips1 code. */

#define EF_MIPS_ARCH_2  0x10000000  /* -mips2 code. */

#define EF_MIPS_ARCH_3  0x20000000  /* -mips3 code. */

#define EF_MIPS_ARCH_4  0x30000000  /* -mips4 code. */

#define EF_MIPS_ARCH_5  0x40000000  /* -mips5 code. */

#define EF_MIPS_ARCH_32 0x50000000  /* MIPS32 code. */

#define EF_MIPS_ARCH_64 0x60000000  /* MIPS64 code. */

/* The ABI of a file. */

#define EF_MIPS_ABI_O32 0x00001000  /* O32 ABI. */

#define EF_MIPS_ABI_O64 0x00002000  /* O32 extended for 64 bit. */

#define EF_MIPS_NOREORDER 0x00000001

#define EF_MIPS_PIC 0x00000002

#define EF_MIPS_CPIC 0x00000004

#define EF_MIPS_ABI2  0x00000020

#define EF_MIPS_OPTIONS_FIRST 0x00000080

#define EF_MIPS_32BITMODE 0x00000100

#define EF_MIPS_ABI 0x0000f000

#define EF_MIPS_ARCH 0xf0000000

/* These constants define the different elf file types */

#define ET_NONE 0

#define ET_REL 1

#define ET_EXEC 2

#define ET_DYN 3

#define ET_CORE 4

#define ET_LOPROC 0xff00

#define ET_HIPROC 0xffff

/* These constants define the various ELF target machines */

#define EM_NONE 0

#define EM_M32 1

#define EM_SPARC 2

#define EM_386 3

#define EM_68K 4

#define EM_88K 5

#define EM_486 6 /* Perhaps disused */

#define EM_860 7

#define EM_MIPS 8 /* MIPS R3000 (officially, big-endian only) */

#define EM_MIPS_RS4_BE 10 /* MIPS R4000 big-endian */

#define EM_PARISC 15 /* HPPA */

#define EM_SPARC32PLUS 18 /* Sun’s “v8plus” */

#define EM_PPC   20 /* PowerPC */

#define EM_PPC64 21 /* PowerPC64 */

#define EM_ARM  40  /* ARM */

#define EM_SH  42 /* SuperH */

#define EM_SPARCV9 43 /* SPARC v9 64-bit */

#define EM_IA_64  50  /* HP/Intel IA-64 */

#define EM_X86_64 62  /* AMD x86-64 */

#define EM_S390 22  /* IBM S/390 */

#define EM_CRIS 76 /* Axis Communications 32-bit embedded processor */

#define EM_V850 87  /* NEC v850 */

#define EM_H8_300H 47 /* Hitachi H8/300H */

#define EM_H8S 48 /* Hitachi H8S */

/*

* This is an interim value that we will use until the committee comes

* up with a final number.

*/

#define EM_ALPHA  0x9026

/* Bogus old v850 magic number, used by old tools. */

#define EM_CYGNUS_V850  0x9080

/*

* This is the old interim value for S/390 architecture

*/

#define EM_S390_OLD 0xA390

/* This is the info that is needed to parse the dynamic section of the file */

#define DT_NULL 0

#define DT_NEEDED 1

#define DT_PLTRELSZ 2

#define DT_PLTGOT 3

#define DT_HASH 4

#define DT_STRTAB 5

#define DT_SYMTAB 6

#define DT_RELA 7

#define DT_RELASZ 8

#define DT_RELAENT  9

#define DT_STRSZ  10

#define DT_SYMENT 11

#define DT_INIT 12

#define DT_FINI 13

#define DT_SONAME 14

#define DT_RPATH  15

#define DT_SYMBOLIC 16

#define DT_REL   17

#define DT_RELSZ  18

#define DT_RELENT 19

#define DT_PLTREL 20

#define DT_DEBUG  21

#define DT_TEXTREL  22

#define DT_JMPREL 23

#define DT_LOPROC 0x70000000

#define DT_HIPROC 0x7fffffff

#define DT_MIPS_RLD_VERSION 0x70000001

#define DT_MIPS_TIME_STAMP  0x70000002

#define DT_MIPS_ICHECKSUM 0x70000003

#define DT_MIPS_IVERSION  0x70000004

#define DT_MIPS_FLAGS 0x70000005

#define RHF_NONE   0

#define RHF_HARDWAY  1

#define RHF_NOTPOT   2

#define DT_MIPS_BASE_ADDRESS  0x70000006

#define DT_MIPS_CONFLICT  0x70000008

#define DT_MIPS_LIBLIST 0x70000009

#define DT_MIPS_LOCAL_GOTNO 0x7000000a

#define DT_MIPS_CONFLICTNO  0x7000000b

#define DT_MIPS_LIBLISTNO 0x70000010

#define DT_MIPS_SYMTABNO  0x70000011

#define DT_MIPS_UNREFEXTNO  0x70000012

#define DT_MIPS_GOTSYM  0x70000013

#define DT_MIPS_HIPAGENO  0x70000014

#define DT_MIPS_RLD_MAP 0x70000016

/* This info is needed when parsing the symbol table */

#define STB_LOCAL 0

#define STB_GLOBAL 1

#define STB_WEAK 2

#define STT_NOTYPE 0

#define STT_OBJECT 1

#define STT_FUNC 2

#define STT_SECTION 3

#define STT_FILE 4

#define ELF_ST_BIND(x)  ((x) >> 4)

#define ELF_ST_TYPE(x)  (((unsigned int) x) & 0xf)

#define ELF32_ST_BIND(x)  ELF_ST_BIND(x)

#define ELF32_ST_TYPE(x)  ELF_ST_TYPE(x)

#define ELF64_ST_BIND(x)  ELF_ST_BIND(x)

#define ELF64_ST_TYPE(x)  ELF_ST_TYPE(x)

/* Symbolic values for the entries in the auxiliary table

put on the initial stack */

#define AT_NULL 0 /* end of vector */

#define AT_IGNORE 1 /* entry should be ignored */

#define AT_EXECFD 2 /* file descriptor of program */

#define AT_PHDR 3 /* program headers for program */

#define AT_PHENT 4 /* size of program header entry */

#define AT_PHNUM 5 /* number of program headers */

#define AT_PAGESZ 6 /* system page size */

#define AT_BASE 7 /* base address of interpreter */

#define AT_FLAGS 8 /* flags */

#define AT_ENTRY 9 /* entry point of program */

#define AT_NOTELF 10  /* program is not ELF */

#define AT_UID 11  /* real uid */

#define AT_EUID 12  /* effective uid */

#define AT_GID 13  /* real gid */

#define AT_EGID 14  /* effective gid */

#define AT_PLATFORM 15 /* string identifying CPU for optimizations */

#define AT_HWCAP 16 /* arch dependent hints at CPU capabilities */

#define AT_CLKTCK 17  /* frequency at which times() increments */

typedef struct dynamic{

Elf32_Sword d_tag;

union{

Elf32_Sword d_val;

Elf32_Addr  d_ptr;

} d_un;

} Elf32_Dyn;

typedef struct {

Elf64_Sxword d_tag; /* entry tag value */

union {

Elf64_Xword d_val;

Elf64_Addr d_ptr;

} d_un;

} Elf64_Dyn;

/* The following are used with relocations */

#define ELF32_R_SYM(x) ((x) >> 8)

#define ELF32_R_TYPE(x) ((x) & 0xff)

#define ELF64_R_SYM(i)  ((i) >> 32)

#define ELF64_R_TYPE(i) ((i) & 0xffffffff)

#define ELF64_R_TYPE_DATA(i) (((ELF64_R_TYPE(i) >> 8) ^ 0x00800000) – 0x00800000)

#define R_386_NONE  0

#define R_386_32  1

#define R_386_PC32  2

#define R_386_GOT32 3

#define R_386_PLT32 4

#define R_386_COPY  5

#define R_386_GLOB_DAT  6

#define R_386_JMP_SLOT  7

#define R_386_RELATIVE  8

#define R_386_GOTOFF  9

#define R_386_GOTPC 10

#define R_386_NUM 11

#define R_MIPS_NONE 0

#define R_MIPS_16 1

#define R_MIPS_32 2

#define R_MIPS_REL32  3

#define R_MIPS_26 4

#define R_MIPS_HI16 5

#define R_MIPS_LO16 6

#define R_MIPS_GPREL16  7

#define R_MIPS_LITERAL  8

#define R_MIPS_GOT16  9

#define R_MIPS_PC16 10

#define R_MIPS_CALL16 11

#define R_MIPS_GPREL32  12

/* The remaining relocs are defined on Irix, although they are not

in the MIPS ELF ABI. */

#define R_MIPS_UNUSED1  13

#define R_MIPS_UNUSED2  14

#define R_MIPS_UNUSED3  15

#define R_MIPS_SHIFT5 16

#define R_MIPS_SHIFT6 17

#define R_MIPS_64 18

#define R_MIPS_GOT_DISP 19

#define R_MIPS_GOT_PAGE 20

#define R_MIPS_GOT_OFST 21

/*

* The following two relocation types are specified in the MIPS ABI

* conformance guide version 1.2 but not yet in the psABI.

*/

#define R_MIPS_GOTHI16  22

#define R_MIPS_GOTLO16  23

#define R_MIPS_SUB  24

#define R_MIPS_INSERT_A 25

#define R_MIPS_INSERT_B 26

#define R_MIPS_DELETE 27

#define R_MIPS_HIGHER 28

#define R_MIPS_HIGHEST  29

/*

* The following two relocation types are specified in the MIPS ABI

* conformance guide version 1.2 but not yet in the psABI.

*/

#define R_MIPS_CALLHI16 30

#define R_MIPS_CALLLO16 31

/*

* This range is reserved for vendor specific relocations.

*/

#define R_MIPS_LOVENDOR 100

#define R_MIPS_HIVENDOR 127

/*

* Sparc ELF relocation types

*/

#define R_SPARC_NONE  0

#define R_SPARC_8 1

#define R_SPARC_16  2

#define R_SPARC_32  3

#define R_SPARC_DISP8 4

#define R_SPARC_DISP16  5

#define R_SPARC_DISP32  6

#define R_SPARC_WDISP30 7

#define R_SPARC_WDISP22 8

#define R_SPARC_HI22  9

#define R_SPARC_22  10

#define R_SPARC_13  11

#define R_SPARC_LO10  12

#define R_SPARC_GOT10 13

#define R_SPARC_GOT13 14

#define R_SPARC_GOT22 15

#define R_SPARC_PC10  16

#define R_SPARC_PC22  17

#define R_SPARC_WPLT30  18

#define R_SPARC_COPY  19

#define R_SPARC_GLOB_DAT  20

#define R_SPARC_JMP_SLOT  21

#define R_SPARC_RELATIVE  22

#define R_SPARC_UA32  23

#define R_SPARC_PLT32 24

#define R_SPARC_HIPLT22 25

#define R_SPARC_LOPLT10 26

#define R_SPARC_PCPLT32 27

#define R_SPARC_PCPLT22 28

#define R_SPARC_PCPLT10 29

#define R_SPARC_10  30

#define R_SPARC_11  31

#define R_SPARC_64  32

#define R_SPARC_OLO10 33

#define R_SPARC_HH22 34

#define R_SPARC_HM10 35

#define R_SPARC_LM22 36

#define R_SPARC_WDISP16 40

#define R_SPARC_WDISP19 41

#define R_SPARC_7 43

#define R_SPARC_5 44

#define R_SPARC_6 45

/* Bits present in AT_HWCAP, primarily for Sparc32. */

#define HWCAP_SPARC_FLUSH 1 /* CPU supports flush instruction. */

#define HWCAP_SPARC_STBAR 2

#define HWCAP_SPARC_SWAP 4

#define HWCAP_SPARC_MULDIV 8

#define HWCAP_SPARC_V9  16

#define HWCAP_SPARC_ULTRA3  32

/*

* 68k ELF relocation types

*/

#define R_68K_NONE  0

#define R_68K_32  1

#define R_68K_16  2

#define R_68K_8 3

#define R_68K_PC32  4

#define R_68K_PC16  5

#define R_68K_PC8 6

#define R_68K_GOT32 7

#define R_68K_GOT16 8

#define R_68K_GOT8  9

#define R_68K_GOT32O  10

#define R_68K_GOT16O  11

#define R_68K_GOT8O 12

#define R_68K_PLT32 13

#define R_68K_PLT16 14

#define R_68K_PLT8  15

#define R_68K_PLT32O  16

#define R_68K_PLT16O  17

#define R_68K_PLT8O 18

#define R_68K_COPY  19

#define R_68K_GLOB_DAT  20

#define R_68K_JMP_SLOT  21

#define R_68K_RELATIVE  22

/*

* Alpha ELF relocation types

*/

#define R_ALPHA_NONE 0 /* No reloc */

#define R_ALPHA_REFLONG 1 /* Direct 32 bit */

#define R_ALPHA_REFQUAD 2 /* Direct 64 bit */

#define R_ALPHA_GPREL32 3 /* GP relative 32 bit */

#define R_ALPHA_LITERAL 4 /* GP relative 16 bit w/optimization */

#define R_ALPHA_LITUSE 5 /* Optimization hint for LITERAL */

#define R_ALPHA_GPDISP 6 /* Add displacement to GP */

#define R_ALPHA_BRADDR 7 /* PC+4 relative 23 bit shifted */

#define R_ALPHA_HINT 8 /* PC+4 relative 16 bit shifted */

#define R_ALPHA_SREL16 9 /* PC relative 16 bit */

#define R_ALPHA_SREL32 10 /* PC relative 32 bit */

#define R_ALPHA_SREL64 11 /* PC relative 64 bit */

#define R_ALPHA_GPRELHIGH 17 /* GP relative 32 bit, high 16 bits */

#define R_ALPHA_GPRELLOW 18 /* GP relative 32 bit, low 16 bits */

#define R_ALPHA_GPREL16 19 /* GP relative 16 bit */

#define R_ALPHA_COPY 24 /* Copy symbol at runtime */

#define R_ALPHA_GLOB_DAT 25 /* Create GOT entry */

#define R_ALPHA_JMP_SLOT 26 /* Create PLT entry */

#define R_ALPHA_RELATIVE 27 /* Adjust by program base */

#define R_ALPHA_BRSGP 28

#define R_ALPHA_TLSGD 29

#define R_ALPHA_TLS_LDM 30

#define R_ALPHA_DTPMOD64 31

#define R_ALPHA_GOTDTPREL 32

#define R_ALPHA_DTPREL64 33

#define R_ALPHA_DTPRELHI 34

#define R_ALPHA_DTPRELLO 35

#define R_ALPHA_DTPREL16 36

#define R_ALPHA_GOTTPREL 37

#define R_ALPHA_TPREL64 38

#define R_ALPHA_TPRELHI 39

#define R_ALPHA_TPRELLO 40

#define R_ALPHA_TPREL16 41

#define SHF_ALPHA_GPREL 0x10000000

/* PowerPC relocations defined by the ABIs */

#define R_PPC_NONE  0

#define R_PPC_ADDR32  1 /* 32bit absolute address */

#define R_PPC_ADDR24  2 /* 26bit address, 2 bits ignored. */

#define R_PPC_ADDR16  3 /* 16bit absolute address */

#define R_PPC_ADDR16_LO 4 /* lower 16bit of absolute address */

#define R_PPC_ADDR16_HI 5 /* high 16bit of absolute address */

#define R_PPC_ADDR16_HA 6 /* adjusted high 16bit */

#define R_PPC_ADDR14  7 /* 16bit address, 2 bits ignored */

#define R_PPC_ADDR14_BRTAKEN  8

#define R_PPC_ADDR14_BRNTAKEN 9

#define R_PPC_REL24 10  /* PC relative 26 bit */

#define R_PPC_REL14 11  /* PC relative 16 bit */

#define R_PPC_REL14_BRTAKEN 12

#define R_PPC_REL14_BRNTAKEN  13

#define R_PPC_GOT16 14

#define R_PPC_GOT16_LO  15

#define R_PPC_GOT16_HI  16

#define R_PPC_GOT16_HA  17

#define R_PPC_PLTREL24  18

#define R_PPC_COPY  19

#define R_PPC_GLOB_DAT  20

#define R_PPC_JMP_SLOT  21

#define R_PPC_RELATIVE  22

#define R_PPC_LOCAL24PC 23

#define R_PPC_UADDR32 24

#define R_PPC_UADDR16 25

#define R_PPC_REL32 26

#define R_PPC_PLT32 27

#define R_PPC_PLTREL32  28

#define R_PPC_PLT16_LO  29

#define R_PPC_PLT16_HI  30

#define R_PPC_PLT16_HA  31

#define R_PPC_SDAREL16  32

#define R_PPC_SECTOFF 33

#define R_PPC_SECTOFF_LO  34

#define R_PPC_SECTOFF_HI  35

#define R_PPC_SECTOFF_HA  36

/* Keep this the last entry. */

#define R_PPC_NUM 37

/* ARM specific declarations */

/* Processor specific flags for the ELF header e_flags field. */

#define EF_ARM_RELEXEC 0x01

#define EF_ARM_HASENTRY 0x02

#define EF_ARM_INTERWORK 0x04

#define EF_ARM_APCS_26 0x08

#define EF_ARM_APCS_FLOAT 0x10

#define EF_ARM_PIC 0x20

#define EF_ALIGN8 0x40 /* 8-bit structure alignment is in use */

#define EF_NEW_ABI 0x80

#define EF_OLD_ABI 0x100

/* Additional symbol types for Thumb */

#define STT_ARM_TFUNC 0xd

/* ARM-specific values for sh_flags */

#define SHF_ARM_ENTRYSECT 0x10000000 /* Section contains an entry point */

#define SHF_ARM_COMDEF 0x80000000 /* Section may be multiply defined

in the input to a link step */

/* ARM-specific program header flags */

#define PF_ARM_SB 0x10000000 /* Segment contains the location

addressed by the static base */

/* ARM relocs. */

#define R_ARM_NONE  0 /* No reloc */

#define R_ARM_PC24  1 /* PC relative 26 bit branch */

#define R_ARM_ABS32 2 /* Direct 32 bit */

#define R_ARM_REL32 3 /* PC relative 32 bit */

#define R_ARM_PC13  4

#define R_ARM_ABS16 5 /* Direct 16 bit */

#define R_ARM_ABS12 6 /* Direct 12 bit */

#define R_ARM_THM_ABS5  7

#define R_ARM_ABS8  8 /* Direct 8 bit */

#define R_ARM_SBREL32 9

#define R_ARM_THM_PC22  10

#define R_ARM_THM_PC8 11

#define R_ARM_AMP_VCALL9  12

#define R_ARM_SWI24 13

#define R_ARM_THM_SWI8  14

#define R_ARM_XPC25 15

#define R_ARM_THM_XPC22 16

#define R_ARM_COPY  20  /* Copy symbol at runtime */

#define R_ARM_GLOB_DAT  21  /* Create GOT entry */

#define R_ARM_JUMP_SLOT 22  /* Create PLT entry */

#define R_ARM_RELATIVE  23  /* Adjust by program base */

#define R_ARM_GOTOFF  24  /* 32 bit offset to GOT */

#define R_ARM_GOTPC 25  /* 32 bit PC relative offset to GOT */

#define R_ARM_GOT32 26  /* 32 bit GOT entry */

#define R_ARM_PLT32 27  /* 32 bit PLT address */

#define R_ARM_CALL 28

#define R_ARM_JUMP24 29

#define R_ARM_GNU_VTENTRY 100

#define R_ARM_GNU_VTINHERIT 101

#define R_ARM_THM_PC11  102 /* thumb unconditional branch */

#define R_ARM_THM_PC9 103 /* thumb conditional branch */

#define R_ARM_RXPC25  249

#define R_ARM_RSBREL32  250

#define R_ARM_THM_RPC22 251

#define R_ARM_RREL32  252

#define R_ARM_RABS22  253

#define R_ARM_RPC24 254

#define R_ARM_RBASE 255

/* Keep this the last entry. */

#define R_ARM_NUM 256

/* s390 relocations defined by the ABIs */

#define R_390_NONE  0 /* No reloc. */

#define R_390_8 1 /* Direct 8 bit. */

#define R_390_12  2 /* Direct 12 bit. */

#define R_390_16  3 /* Direct 16 bit. */

#define R_390_32  4 /* Direct 32 bit. */

#define R_390_PC32  5 /* PC relative 32 bit.  */

#define R_390_GOT12 6 /* 12 bit GOT offset. */

#define R_390_GOT32 7 /* 32 bit GOT offset. */

#define R_390_PLT32 8 /* 32 bit PC relative PLT address. */

#define R_390_COPY  9 /* Copy symbol at runtime. */

#define R_390_GLOB_DAT  10  /* Create GOT entry. */

#define R_390_JMP_SLOT  11  /* Create PLT entry. */

#define R_390_RELATIVE  12  /* Adjust by program base. */

#define R_390_GOTOFF32  13  /* 32 bit offset to GOT.   */

#define R_390_GOTPC 14  /* 32 bit PC rel. offset to GOT. */

#define R_390_GOT16 15  /* 16 bit GOT offset. */

#define R_390_PC16  16  /* PC relative 16 bit.  */

#define R_390_PC16DBL 17  /* PC relative 16 bit shifted by 1. */

#define R_390_PLT16DBL  18  /* 16 bit PC rel. PLT shifted by 1. */

#define R_390_PC32DBL 19  /* PC relative 32 bit shifted by 1. */

#define R_390_PLT32DBL  20  /* 32 bit PC rel. PLT shifted by 1. */

#define R_390_GOTPCDBL  21  /* 32 bit PC rel. GOT shifted by 1. */

#define R_390_64  22  /* Direct 64 bit. */

#define R_390_PC64  23  /* PC relative 64 bit.  */

#define R_390_GOT64 24  /* 64 bit GOT offset. */

#define R_390_PLT64 25  /* 64 bit PC relative PLT address. */

#define R_390_GOTENT  26  /* 32 bit PC rel. to GOT entry >> 1. */

#define R_390_GOTOFF16  27  /* 16 bit offset to GOT. */

#define R_390_GOTOFF64  28  /* 64 bit offset to GOT. */

#define R_390_GOTPLT12  29  /* 12 bit offset to jump slot.  */

#define R_390_GOTPLT16  30  /* 16 bit offset to jump slot.  */

#define R_390_GOTPLT32  31  /* 32 bit offset to jump slot.  */

#define R_390_GOTPLT64  32  /* 64 bit offset to jump slot.  */

#define R_390_GOTPLTENT 33  /* 32 bit rel. offset to jump slot. */

#define R_390_PLTOFF16  34  /* 16 bit offset from GOT to PLT. */

#define R_390_PLTOFF32  35  /* 32 bit offset from GOT to PLT. */

#define R_390_PLTOFF64  36  /* 16 bit offset from GOT to PLT. */

#define R_390_TLS_LOAD  37  /* Tag for load insn in TLS code. */

#define R_390_TLS_GDCALL  38  /* Tag for function call in general

dynamic TLS code. */

#define R_390_TLS_LDCALL  39  /* Tag for function call in local

dynamic TLS code. */

#define R_390_TLS_GD32  40  /* Direct 32 bit for general dynamic

thread local data. */

#define R_390_TLS_GD64  41  /* Direct 64 bit for general dynamic

thread local data. */

#define R_390_TLS_GOTIE12 42  /* 12 bit GOT offset for static TLS

block offset. */

#define R_390_TLS_GOTIE32 43  /* 32 bit GOT offset for static TLS

block offset. */

#define R_390_TLS_GOTIE64 44  /* 64 bit GOT offset for static TLS

block offset. */

#define R_390_TLS_LDM32 45  /* Direct 32 bit for local dynamic

thread local data in LD code. */

#define R_390_TLS_LDM64 46  /* Direct 64 bit for local dynamic

thread local data in LD code. */

#define R_390_TLS_IE32  47  /* 32 bit address of GOT entry for

negated static TLS block offset. */

#define R_390_TLS_IE64  48  /* 64 bit address of GOT entry for

negated static TLS block offset. */

#define R_390_TLS_IEENT 49  /* 32 bit rel. offset to GOT entry for

negated static TLS block offset. */

#define R_390_TLS_LE32  50  /* 32 bit negated offset relative to

static TLS block. */

#define R_390_TLS_LE64  51  /* 64 bit negated offset relative to

static TLS block. */

#define R_390_TLS_LDO32 52  /* 32 bit offset relative to TLS

block. */

#define R_390_TLS_LDO64 53  /* 64 bit offset relative to TLS

block. */

#define R_390_TLS_DTPMOD  54  /* ID of module containing symbol. */

#define R_390_TLS_DTPOFF  55  /* Offset in TLS block. */

#define R_390_TLS_TPOFF 56  /* Negate offset in static TLS

block. */

/* Keep this the last entry. */

#define R_390_NUM 57

/* x86-64 relocation types */

#define R_X86_64_NONE 0 /* No reloc */

#define R_X86_64_64 1 /* Direct 64 bit */

#define R_X86_64_PC32 2 /* PC relative 32 bit signed */

#define R_X86_64_GOT32  3 /* 32 bit GOT entry */

#define R_X86_64_PLT32  4 /* 32 bit PLT address */

#define R_X86_64_COPY 5 /* Copy symbol at runtime */

#define R_X86_64_GLOB_DAT 6 /* Create GOT entry */

#define R_X86_64_JUMP_SLOT  7 /* Create PLT entry */

#define R_X86_64_RELATIVE 8 /* Adjust by program base */

#define R_X86_64_GOTPCREL 9 /* 32 bit signed pc relative

offset to GOT */

#define R_X86_64_32 10  /* Direct 32 bit zero extended */

#define R_X86_64_32S  11  /* Direct 32 bit sign extended */

#define R_X86_64_16 12  /* Direct 16 bit zero extended */

#define R_X86_64_PC16 13  /* 16 bit sign extended pc relative */

#define R_X86_64_8  14  /* Direct 8 bit sign extended */

#define R_X86_64_PC8  15  /* 8 bit sign extended pc relative */

#define R_X86_64_NUM  16

/* Legal values for e_flags field of Elf64_Ehdr. */

#define EF_ALPHA_32BIT  1 /* All addresses are below 2GB */

/* HPPA specific definitions. */

/* Legal values for e_flags field of Elf32_Ehdr. */

#define EF_PARISC_TRAPNIL 0x00010000 /* Trap nil pointer dereference. */

#define EF_PARISC_EXT 0x00020000 /* Program uses arch. extensions. */

#define EF_PARISC_LSB 0x00040000 /* Program expects little endian. */

#define EF_PARISC_WIDE  0x00080000 /* Program expects wide mode. */

#define EF_PARISC_NO_KABP 0x00100000 /* No kernel assisted branch

prediction. */

#define EF_PARISC_LAZYSWAP  0x00400000 /* Allow lazy swapping. */

#define EF_PARISC_ARCH  0x0000ffff /* Architecture version. */

/* Defined values for `e_flags & EF_PARISC_ARCH’ are: */

#define EFA_PARISC_1_0   0x020b /* PA-RISC 1.0 big-endian. */

#define EFA_PARISC_1_1   0x0210 /* PA-RISC 1.1 big-endian. */

#define EFA_PARISC_2_0   0x0214 /* PA-RISC 2.0 big-endian. */

/* Additional section indeces. */

#define SHN_PARISC_ANSI_COMMON  0xff00   /* Section for tenatively declared

symbols in ANSI C. */

#define SHN_PARISC_HUGE_COMMON  0xff01   /* Common blocks in huge model. */

/* Legal values for sh_type field of Elf32_Shdr. */

#define SHT_PARISC_EXT  0x70000000 /* Contains product specific ext. */

#define SHT_PARISC_UNWIND 0x70000001 /* Unwind information. */

#define SHT_PARISC_DOC  0x70000002 /* Debug info for optimized code. */

/* Legal values for sh_flags field of Elf32_Shdr. */

#define SHF_PARISC_SHORT  0x20000000 /* Section with short addressing. */

#define SHF_PARISC_HUGE 0x40000000 /* Section far from gp. */

#define SHF_PARISC_SBP  0x80000000 /* Static branch prediction code. */

/* Legal values for ST_TYPE subfield of st_info (symbol type). */

#define STT_PARISC_MILLICODE  13  /* Millicode function entry point. */

#define STT_HP_OPAQUE (STT_LOOS + 0x1)

#define STT_HP_STUB (STT_LOOS + 0x2)

/* HPPA relocs. */

#define R_PARISC_NONE 0 /* No reloc. */

#define R_PARISC_DIR32  1 /* Direct 32-bit reference. */

#define R_PARISC_DIR21L 2 /* Left 21 bits of eff. address. */

#define R_PARISC_DIR17R 3 /* Right 17 bits of eff. address. */

#define R_PARISC_DIR17F 4 /* 17 bits of eff. address. */

#define R_PARISC_DIR14R 6 /* Right 14 bits of eff. address. */

#define R_PARISC_PCREL32  9 /* 32-bit rel. address. */

#define R_PARISC_PCREL21L 10  /* Left 21 bits of rel. address. */

#define R_PARISC_PCREL17R 11  /* Right 17 bits of rel. address. */

#define R_PARISC_PCREL17F 12  /* 17 bits of rel. address. */

#define R_PARISC_PCREL14R 14  /* Right 14 bits of rel. address. */

#define R_PARISC_DPREL21L 18  /* Left 21 bits of rel. address. */

#define R_PARISC_DPREL14R 22  /* Right 14 bits of rel. address. */

#define R_PARISC_GPREL21L 26  /* GP-relative, left 21 bits. */

#define R_PARISC_GPREL14R 30  /* GP-relative, right 14 bits. */

#define R_PARISC_LTOFF21L 34  /* LT-relative, left 21 bits. */

#define R_PARISC_LTOFF14R 38  /* LT-relative, right 14 bits. */

#define R_PARISC_SECREL32 41  /* 32 bits section rel. address. */

#define R_PARISC_SEGBASE  48  /* No relocation, set segment base. */

#define R_PARISC_SEGREL32 49  /* 32 bits segment rel. address. */

#define R_PARISC_PLTOFF21L  50  /* PLT rel. address, left 21 bits. */

#define R_PARISC_PLTOFF14R  54  /* PLT rel. address, right 14 bits. */

#define R_PARISC_LTOFF_FPTR32 57  /* 32 bits LT-rel. function pointer. */

#define R_PARISC_LTOFF_FPTR21L  58  /* LT-rel. fct ptr, left 21 bits. */

#define R_PARISC_LTOFF_FPTR14R  62  /* LT-rel. fct ptr, right 14 bits. */

#define R_PARISC_FPTR64 64  /* 64 bits function address. */

#define R_PARISC_PLABEL32 65  /* 32 bits function address. */

#define R_PARISC_PCREL64  72  /* 64 bits PC-rel. address. */

#define R_PARISC_PCREL22F 74  /* 22 bits PC-rel. address. */

#define R_PARISC_PCREL14WR  75  /* PC-rel. address, right 14 bits. */

#define R_PARISC_PCREL14DR  76  /* PC rel. address, right 14 bits. */

#define R_PARISC_PCREL16F 77  /* 16 bits PC-rel. address. */

#define R_PARISC_PCREL16WF  78  /* 16 bits PC-rel. address. */

#define R_PARISC_PCREL16DF  79  /* 16 bits PC-rel. address. */

#define R_PARISC_DIR64  80  /* 64 bits of eff. address. */

#define R_PARISC_DIR14WR  83  /* 14 bits of eff. address. */

#define R_PARISC_DIR14DR  84  /* 14 bits of eff. address. */

#define R_PARISC_DIR16F 85  /* 16 bits of eff. address. */

#define R_PARISC_DIR16WF  86  /* 16 bits of eff. address. */

#define R_PARISC_DIR16DF  87  /* 16 bits of eff. address. */

#define R_PARISC_GPREL64  88  /* 64 bits of GP-rel. address. */

#define R_PARISC_GPREL14WR  91  /* GP-rel. address, right 14 bits. */

#define R_PARISC_GPREL14DR  92  /* GP-rel. address, right 14 bits. */

#define R_PARISC_GPREL16F 93  /* 16 bits GP-rel. address. */

#define R_PARISC_GPREL16WF  94  /* 16 bits GP-rel. address. */

#define R_PARISC_GPREL16DF  95  /* 16 bits GP-rel. address. */

#define R_PARISC_LTOFF64  96  /* 64 bits LT-rel. address. */

#define R_PARISC_LTOFF14WR  99  /* LT-rel. address, right 14 bits. */

#define R_PARISC_LTOFF14DR  100 /* LT-rel. address, right 14 bits. */

#define R_PARISC_LTOFF16F 101 /* 16 bits LT-rel. address. */

#define R_PARISC_LTOFF16WF  102 /* 16 bits LT-rel. address. */

#define R_PARISC_LTOFF16DF  103 /* 16 bits LT-rel. address. */

#define R_PARISC_SECREL64 104 /* 64 bits section rel. address. */

#define R_PARISC_SEGREL64 112 /* 64 bits segment rel. address. */

#define R_PARISC_PLTOFF14WR 115 /* PLT-rel. address, right 14 bits. */

#define R_PARISC_PLTOFF14DR 116 /* PLT-rel. address, right 14 bits. */

#define R_PARISC_PLTOFF16F  117 /* 16 bits LT-rel. address. */

#define R_PARISC_PLTOFF16WF 118 /* 16 bits PLT-rel. address. */

#define R_PARISC_PLTOFF16DF 119 /* 16 bits PLT-rel. address. */

#define R_PARISC_LTOFF_FPTR64 120 /* 64 bits LT-rel. function ptr. */

#define R_PARISC_LTOFF_FPTR14WR 123 /* LT-rel. fct. ptr., right 14 bits. */

#define R_PARISC_LTOFF_FPTR14DR 124 /* LT-rel. fct. ptr., right 14 bits. */

#define R_PARISC_LTOFF_FPTR16F  125 /* 16 bits LT-rel. function ptr. */

#define R_PARISC_LTOFF_FPTR16WF 126 /* 16 bits LT-rel. function ptr. */

#define R_PARISC_LTOFF_FPTR16DF 127 /* 16 bits LT-rel. function ptr. */

#define R_PARISC_LORESERVE  128

#define R_PARISC_COPY 128 /* Copy relocation. */

#define R_PARISC_IPLT 129 /* Dynamic reloc, imported PLT */

#define R_PARISC_EPLT 130 /* Dynamic reloc, exported PLT */

#define R_PARISC_TPREL32  153 /* 32 bits TP-rel. address. */

#define R_PARISC_TPREL21L 154 /* TP-rel. address, left 21 bits. */

#define R_PARISC_TPREL14R 158 /* TP-rel. address, right 14 bits. */

#define R_PARISC_LTOFF_TP21L  162 /* LT-TP-rel. address, left 21 bits. */

#define R_PARISC_LTOFF_TP14R  166 /* LT-TP-rel. address, right 14 bits.*/

#define R_PARISC_LTOFF_TP14F  167 /* 14 bits LT-TP-rel. address. */

#define R_PARISC_TPREL64  216 /* 64 bits TP-rel. address. */

#define R_PARISC_TPREL14WR  219 /* TP-rel. address, right 14 bits. */

#define R_PARISC_TPREL14DR  220 /* TP-rel. address, right 14 bits. */

#define R_PARISC_TPREL16F 221 /* 16 bits TP-rel. address. */

#define R_PARISC_TPREL16WF  222 /* 16 bits TP-rel. address. */

#define R_PARISC_TPREL16DF  223 /* 16 bits TP-rel. address. */

#define R_PARISC_LTOFF_TP64 224 /* 64 bits LT-TP-rel. address. */

#define R_PARISC_LTOFF_TP14WR 227 /* LT-TP-rel. address, right 14 bits.*/

#define R_PARISC_LTOFF_TP14DR 228 /* LT-TP-rel. address, right 14 bits.*/

#define R_PARISC_LTOFF_TP16F  229 /* 16 bits LT-TP-rel. address. */

#define R_PARISC_LTOFF_TP16WF 230 /* 16 bits LT-TP-rel. address. */

#define R_PARISC_LTOFF_TP16DF 231 /* 16 bits LT-TP-rel. address. */

#define R_PARISC_HIRESERVE  255

/* Legal values for p_type field of Elf32_Phdr/Elf64_Phdr. */

#define PT_HP_TLS (PT_LOOS + 0x0)

#define PT_HP_CORE_NONE (PT_LOOS + 0x1)

#define PT_HP_CORE_VERSION  (PT_LOOS + 0x2)

#define PT_HP_CORE_KERNEL (PT_LOOS + 0x3)

#define PT_HP_CORE_COMM (PT_LOOS + 0x4)

#define PT_HP_CORE_PROC (PT_LOOS + 0x5)

#define PT_HP_CORE_LOADABLE (PT_LOOS + 0x6)

#define PT_HP_CORE_STACK  (PT_LOOS + 0x7)

#define PT_HP_CORE_SHM  (PT_LOOS + 0x8)

#define PT_HP_CORE_MMF  (PT_LOOS + 0x9)

#define PT_HP_PARALLEL  (PT_LOOS + 0x10)

#define PT_HP_FASTBIND  (PT_LOOS + 0x11)

#define PT_HP_OPT_ANNOT (PT_LOOS + 0x12)

#define PT_HP_HSL_ANNOT (PT_LOOS + 0x13)

#define PT_HP_STACK (PT_LOOS + 0x14)

#define PT_PARISC_ARCHEXT 0x70000000

#define PT_PARISC_UNWIND  0x70000001

/* Legal values for p_flags field of Elf32_Phdr/Elf64_Phdr. */

#define PF_PARISC_SBP 0x08000000

#define PF_HP_PAGE_SIZE 0x00100000

#define PF_HP_FAR_SHARED  0x00200000

#define PF_HP_NEAR_SHARED 0x00400000

#define PF_HP_CODE  0x01000000

#define PF_HP_MODIFY  0x02000000

#define PF_HP_LAZYSWAP  0x04000000

#define PF_HP_SBP 0x08000000

/* IA-64 specific declarations. */

/* Processor specific flags for the Ehdr e_flags field. */

#define EF_IA_64_MASKOS 0x0000000f  /* os-specific flags */

#define EF_IA_64_ABI64  0x00000010  /* 64-bit ABI */

#define EF_IA_64_ARCH 0xff000000  /* arch. version mask */

/* Processor specific values for the Phdr p_type field. */

#define PT_IA_64_ARCHEXT  (PT_LOPROC + 0) /* arch extension bits */

#define PT_IA_64_UNWIND (PT_LOPROC + 1) /* ia64 unwind bits */

/* Processor specific flags for the Phdr p_flags field. */

#define PF_IA_64_NORECOV  0x80000000  /* spec insns w/o recovery */

/* Processor specific values for the Shdr sh_type field. */

#define SHT_IA_64_EXT (SHT_LOPROC + 0) /* extension bits */

#define SHT_IA_64_UNWIND  (SHT_LOPROC + 1) /* unwind bits */

/* Processor specific flags for the Shdr sh_flags field. */

#define SHF_IA_64_SHORT 0x10000000  /* section near gp */

#define SHF_IA_64_NORECOV 0x20000000  /* spec insns w/o recovery */

/* Processor specific values for the Dyn d_tag field. */

#define DT_IA_64_PLT_RESERVE  (DT_LOPROC + 0)

#define DT_IA_64_NUM  1

/* IA-64 relocations. */

#define R_IA64_NONE 0x00  /* none */

#define R_IA64_IMM14  0x21  /* symbol + addend, add imm14 */

#define R_IA64_IMM22  0x22  /* symbol + addend, add imm22 */

#define R_IA64_IMM64  0x23  /* symbol + addend, mov imm64 */

#define R_IA64_DIR32MSB 0x24  /* symbol + addend, data4 MSB */

#define R_IA64_DIR32LSB 0x25  /* symbol + addend, data4 LSB */

#define R_IA64_DIR64MSB 0x26  /* symbol + addend, data8 MSB */

#define R_IA64_DIR64LSB 0x27  /* symbol + addend, data8 LSB */

#define R_IA64_GPREL22  0x2a  /* @gprel(sym + add), add imm22 */

#define R_IA64_GPREL64I 0x2b  /* @gprel(sym + add), mov imm64 */

#define R_IA64_GPREL32MSB 0x2c  /* @gprel(sym + add), data4 MSB */

#define R_IA64_GPREL32LSB 0x2d  /* @gprel(sym + add), data4 LSB */

#define R_IA64_GPREL64MSB 0x2e  /* @gprel(sym + add), data8 MSB */

#define R_IA64_GPREL64LSB 0x2f  /* @gprel(sym + add), data8 LSB */

#define R_IA64_LTOFF22  0x32  /* @ltoff(sym + add), add imm22 */

#define R_IA64_LTOFF64I 0x33  /* @ltoff(sym + add), mov imm64 */

#define R_IA64_PLTOFF22 0x3a  /* @pltoff(sym + add), add imm22 */

#define R_IA64_PLTOFF64I  0x3b  /* @pltoff(sym + add), mov imm64 */

#define R_IA64_PLTOFF64MSB  0x3e  /* @pltoff(sym + add), data8 MSB */

#define R_IA64_PLTOFF64LSB  0x3f  /* @pltoff(sym + add), data8 LSB */

#define R_IA64_FPTR64I  0x43  /* @fptr(sym + add), mov imm64 */

#define R_IA64_FPTR32MSB  0x44  /* @fptr(sym + add), data4 MSB */

#define R_IA64_FPTR32LSB  0x45  /* @fptr(sym + add), data4 LSB */

#define R_IA64_FPTR64MSB  0x46  /* @fptr(sym + add), data8 MSB */

#define R_IA64_FPTR64LSB  0x47  /* @fptr(sym + add), data8 LSB */

#define R_IA64_PCREL60B 0x48  /* @pcrel(sym + add), brl */

#define R_IA64_PCREL21B 0x49  /* @pcrel(sym + add), ptb, call */

#define R_IA64_PCREL21M 0x4a  /* @pcrel(sym + add), chk.s */

#define R_IA64_PCREL21F 0x4b  /* @pcrel(sym + add), fchkf */

#define R_IA64_PCREL32MSB 0x4c  /* @pcrel(sym + add), data4 MSB */

#define R_IA64_PCREL32LSB 0x4d  /* @pcrel(sym + add), data4 LSB */

#define R_IA64_PCREL64MSB 0x4e  /* @pcrel(sym + add), data8 MSB */

#define R_IA64_PCREL64LSB 0x4f  /* @pcrel(sym + add), data8 LSB */

#define R_IA64_LTOFF_FPTR22 0x52  /* @ltoff(@fptr(s+a)), imm22 */

#define R_IA64_LTOFF_FPTR64I  0x53  /* @ltoff(@fptr(s+a)), imm64 */

#define R_IA64_LTOFF_FPTR32MSB  0x54  /* @ltoff(@fptr(s+a)), data4 MSB */

#define R_IA64_LTOFF_FPTR32LSB  0x55  /* @ltoff(@fptr(s+a)), data4 LSB */

#define R_IA64_LTOFF_FPTR64MSB  0x56  /* @ltoff(@fptr(s+a)), data8 MSB */

#define R_IA64_LTOFF_FPTR64LSB  0x57  /* @ltoff(@fptr(s+a)), data8 LSB */

#define R_IA64_SEGREL32MSB  0x5c  /* @segrel(sym + add), data4 MSB */

#define R_IA64_SEGREL32LSB  0x5d  /* @segrel(sym + add), data4 LSB */

#define R_IA64_SEGREL64MSB  0x5e  /* @segrel(sym + add), data8 MSB */

#define R_IA64_SEGREL64LSB  0x5f  /* @segrel(sym + add), data8 LSB */

#define R_IA64_SECREL32MSB  0x64  /* @secrel(sym + add), data4 MSB */

#define R_IA64_SECREL32LSB  0x65  /* @secrel(sym + add), data4 LSB */

#define R_IA64_SECREL64MSB  0x66  /* @secrel(sym + add), data8 MSB */

#define R_IA64_SECREL64LSB  0x67  /* @secrel(sym + add), data8 LSB */

#define R_IA64_REL32MSB 0x6c  /* data 4 + REL */

#define R_IA64_REL32LSB 0x6d  /* data 4 + REL */

#define R_IA64_REL64MSB 0x6e  /* data 8 + REL */

#define R_IA64_REL64LSB 0x6f  /* data 8 + REL */

#define R_IA64_LTV32MSB 0x74  /* symbol + addend, data4 MSB */

#define R_IA64_LTV32LSB 0x75  /* symbol + addend, data4 LSB */

#define R_IA64_LTV64MSB 0x76  /* symbol + addend, data8 MSB */

#define R_IA64_LTV64LSB 0x77  /* symbol + addend, data8 LSB */

#define R_IA64_PCREL21BI  0x79  /* @pcrel(sym + add), 21bit inst */

#define R_IA64_PCREL22  0x7a  /* @pcrel(sym + add), 22bit inst */

#define R_IA64_PCREL64I 0x7b  /* @pcrel(sym + add), 64bit inst */

#define R_IA64_IPLTMSB  0x80  /* dynamic reloc, imported PLT, MSB */

#define R_IA64_IPLTLSB  0x81  /* dynamic reloc, imported PLT, LSB */

#define R_IA64_COPY 0x84  /* copy relocation */

#define R_IA64_SUB  0x85  /* Addend and symbol difference */

#define R_IA64_LTOFF22X 0x86  /* LTOFF22, relaxable. */

#define R_IA64_LDXMOV 0x87  /* Use of LTOFF22X. */

#define R_IA64_TPREL14  0x91  /* @tprel(sym + add), imm14 */

#define R_IA64_TPREL22  0x92  /* @tprel(sym + add), imm22 */

#define R_IA64_TPREL64I 0x93  /* @tprel(sym + add), imm64 */

#define R_IA64_TPREL64MSB 0x96  /* @tprel(sym + add), data8 MSB */

#define R_IA64_TPREL64LSB 0x97  /* @tprel(sym + add), data8 LSB */

#define R_IA64_LTOFF_TPREL22  0x9a  /* @ltoff(@tprel(s+a)), imm2 */

#define R_IA64_DTPMOD64MSB  0xa6  /* @dtpmod(sym + add), data8 MSB */

#define R_IA64_DTPMOD64LSB  0xa7  /* @dtpmod(sym + add), data8 LSB */

#define R_IA64_LTOFF_DTPMOD22 0xaa  /* @ltoff(@dtpmod(sym + add)), imm22 */

#define R_IA64_DTPREL14 0xb1  /* @dtprel(sym + add), imm14 */

#define R_IA64_DTPREL22 0xb2  /* @dtprel(sym + add), imm22 */

#define R_IA64_DTPREL64I  0xb3  /* @dtprel(sym + add), imm64 */

#define R_IA64_DTPREL32MSB  0xb4  /* @dtprel(sym + add), data4 MSB */

#define R_IA64_DTPREL32LSB  0xb5  /* @dtprel(sym + add), data4 LSB */

#define R_IA64_DTPREL64MSB  0xb6  /* @dtprel(sym + add), data8 MSB */

#define R_IA64_DTPREL64LSB  0xb7  /* @dtprel(sym + add), data8 LSB */

#define R_IA64_LTOFF_DTPREL22 0xba  /* @ltoff(@dtprel(s+a)), imm22 */

typedef struct elf32_rel {

Elf32_Addr  r_offset;

Elf32_Word  r_info;

} Elf32_Rel;

typedef struct elf64_rel {

Elf64_Addr r_offset;  /* Location at which to apply the action */

Elf64_Xword r_info; /* index and type of relocation */

} Elf64_Rel;

typedef struct elf32_rela{

Elf32_Addr  r_offset;

Elf32_Word  r_info;

Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct elf64_rela {

Elf64_Addr r_offset;  /* Location at which to apply the action */

Elf64_Xword r_info; /* index and type of relocation */

Elf64_Sxword r_addend;  /* Constant addend used to compute value */

} Elf64_Rela;

typedef struct elf32_sym{

Elf32_Word  st_name;

Elf32_Addr  st_value;

Elf32_Word  st_size;

unsigned char st_info;

unsigned char st_other;

Elf32_Half  st_shndx;

} Elf32_Sym;

typedef struct elf64_sym {

Elf64_Word st_name; /* Symbol name, index in string tbl */

unsigned char st_info;  /* Type and binding attributes */

unsigned char st_other; /* No defined meaning, 0 */

Elf64_Half st_shndx;  /* Associated section index */

Elf64_Addr st_value;  /* Value of the symbol */

Elf64_Xword st_size;  /* Associated symbol size */

} Elf64_Sym;

#define EI_NIDENT 16

typedef struct elf32_hdr{

unsigned char e_ident[EI_NIDENT];

Elf32_Half  e_type;

Elf32_Half  e_machine;

Elf32_Word  e_version;

Elf32_Addr  e_entry; /* Entry point */

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word  e_flags;

Elf32_Half  e_ehsize;

Elf32_Half  e_phentsize;

Elf32_Half  e_phnum;

Elf32_Half  e_shentsize;

Elf32_Half  e_shnum;

Elf32_Half  e_shstrndx;

} Elf32_Ehdr;

typedef struct elf64_hdr {

unsigned char e_ident[16];  /* ELF “magic number” */

Elf64_Half e_type;

Elf64_Half e_machine;

Elf64_Word e_version;

Elf64_Addr e_entry; /* Entry point virtual address */

Elf64_Off e_phoff;  /* Program header table file offset */

Elf64_Off e_shoff;  /* Section header table file offset */

Elf64_Word e_flags;

Elf64_Half e_ehsize;

Elf64_Half e_phentsize;

Elf64_Half e_phnum;

Elf64_Half e_shentsize;

Elf64_Half e_shnum;

Elf64_Half e_shstrndx;

} Elf64_Ehdr;

/* These constants define the permissions on sections in the program

header, p_flags. */

#define PF_R  0x4

#define PF_W  0x2

#define PF_X  0x1

typedef struct elf32_phdr{

Elf32_Word  p_type;

Elf32_Off p_offset;

Elf32_Addr  p_vaddr;

Elf32_Addr  p_paddr;

Elf32_Word  p_filesz;

Elf32_Word  p_memsz;

Elf32_Word  p_flags;

Elf32_Word  p_align;

} Elf32_Phdr;

typedef struct elf64_phdr {

Elf64_Word p_type;

Elf64_Word p_flags;

Elf64_Off p_offset; /* Segment file offset */

Elf64_Addr p_vaddr; /* Segment virtual address */

Elf64_Addr p_paddr; /* Segment physical address */

Elf64_Xword p_filesz; /* Segment size in file */

Elf64_Xword p_memsz;  /* Segment size in memory */

Elf64_Xword p_align;  /* Segment alignment, file & memory */

} Elf64_Phdr;

/* sh_type */

#define SHT_NULL  0

#define SHT_PROGBITS  1

#define SHT_SYMTAB  2

#define SHT_STRTAB  3

#define SHT_RELA  4

#define SHT_HASH  5

#define SHT_DYNAMIC 6

#define SHT_NOTE  7

#define SHT_NOBITS  8

#define SHT_REL 9

#define SHT_SHLIB 10

#define SHT_DYNSYM  11

#define SHT_NUM 12

#define SHT_LOPROC  0x70000000

#define SHT_HIPROC  0x7fffffff

#define SHT_LOUSER  0x80000000

#define SHT_HIUSER  0xffffffff

#define SHT_MIPS_LIST 0x70000000

#define SHT_MIPS_CONFLICT 0x70000002

#define SHT_MIPS_GPTAB  0x70000003

#define SHT_MIPS_UCODE  0x70000004

/* sh_flags */

#define SHF_WRITE 0x1

#define SHF_ALLOC 0x2

#define SHF_EXECINSTR 0x4

#define SHF_MASKPROC  0xf0000000

#define SHF_MIPS_GPREL  0x10000000

/* special section indexes */

#define SHN_UNDEF 0

#define SHN_LORESERVE 0xff00

#define SHN_LOPROC  0xff00

#define SHN_HIPROC  0xff1f

#define SHN_ABS 0xfff1

#define SHN_COMMON  0xfff2

#define SHN_HIRESERVE 0xffff

#define SHN_MIPS_ACCOMON  0xff00

typedef struct elf32_shdr {

Elf32_Word  sh_name;

Elf32_Word  sh_type;

Elf32_Word  sh_flags;

Elf32_Addr  sh_addr;

Elf32_Off sh_offset;

Elf32_Word  sh_size;

Elf32_Word  sh_link;

Elf32_Word  sh_info;

Elf32_Word  sh_addralign;

Elf32_Word  sh_entsize;

} Elf32_Shdr;

typedef struct elf64_shdr {

Elf64_Word sh_name; /* Section name, index in string tbl */

Elf64_Word sh_type; /* Type of section */

Elf64_Xword sh_flags; /* Miscellaneous section attributes */

Elf64_Addr sh_addr; /* Section virtual addr at execution */

Elf64_Off sh_offset;  /* Section file offset */

Elf64_Xword sh_size;  /* Size of section in bytes */

Elf64_Word sh_link; /* Index of another section */

Elf64_Word sh_info; /* Additional section information */

Elf64_Xword sh_addralign; /* Section alignment */

Elf64_Xword sh_entsize; /* Entry size if section holds table */

} Elf64_Shdr;

#define EI_MAG0 0 /* e_ident[] indexes */

#define EI_MAG1 1

#define EI_MAG2 2

#define EI_MAG3 3

#define EI_CLASS  4

#define EI_DATA 5

#define EI_VERSION  6

#define EI_PAD  7

#define ELFMAG0 0x7f  /* EI_MAG */

#define ELFMAG1 ‘E’

#define ELFMAG2 ‘L’

#define ELFMAG3 ‘F’

#define ELFMAG  “177ELF”

#define SELFMAG 4

#define ELFCLASSNONE  0 /* EI_CLASS */

#define ELFCLASS32  1

#define ELFCLASS64  2

#define ELFCLASSNUM 3

#define ELFDATANONE 0 /* e_ident[EI_DATA] */

#define ELFDATA2LSB 1

#define ELFDATA2MSB 2

#define EV_NONE 0 /* e_version, EI_VERSION */

#define EV_CURRENT  1

#define EV_NUM  2

/* Notes used in ET_CORE */

#define NT_PRSTATUS 1

#define NT_PRFPREG  2

#define NT_PRPSINFO 3

#define NT_TASKSTRUCT 4

#define NT_PRXFPREG 0x46e62b7f /* copied from gdb5.1/include/elf/common.h */

/* Note header in a PT_NOTE section */

typedef struct elf32_note {

Elf32_Word  n_namesz; /* Name size */

Elf32_Word  n_descsz; /* Content size */

Elf32_Word  n_type; /* Content type */

} Elf32_Nhdr;

/* Note header in a PT_NOTE section */

typedef struct elf64_note {

Elf64_Word n_namesz;  /* Name size */

Elf64_Word n_descsz;  /* Content size */

Elf64_Word n_type;  /* Content type */

} Elf64_Nhdr;

#if ELF_CLASS == ELFCLASS32

#define elfhdr  elf32_hdr

#define elf_phdr  elf32_phdr

#define elf_note  elf32_note

#define elf_shdr  elf32_shdr

#define elf_sym elf32_sym

#define elf_addr_t  Elf32_Off

#ifdef ELF_USES_RELOCA

# define ELF_RELOC Elf32_Rela

#else

# define ELF_RELOC Elf32_Rel

#endif

#else

#define elfhdr  elf64_hdr

#define elf_phdr  elf64_phdr

#define elf_note  elf64_note

#define elf_shdr  elf64_shdr

#define elf_sym elf64_sym

#define elf_addr_t  Elf64_Off

#ifdef ELF_USES_RELOCA

# define ELF_RELOC Elf64_Rela

#else

# define ELF_RELOC Elf64_Rel

#endif

#endif /* ELF_CLASS */

#ifndef ElfW

# if ELF_CLASS == ELFCLASS32

# define ElfW(x) Elf32_ ## x

# define ELFW(x) ELF32_ ## x

# else

# define ElfW(x) Elf64_ ## x

# define ELFW(x) ELF64_ ## x

# endif

#endif

#endif /* _QEMU_ELF_H */

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/222867.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • python global关键字_python中global是什么意思

    python global关键字_python中global是什么意思第一,两者的功能不同。global关键字修饰变量后标识该变量是全局变量,对该变量进行修改就是修改全局变量,而nonlocal关键字修饰变量后标识该变量是上一级函数中的局部变量,如果上一级函数中不存在该局部变量,nonlocal位置会发生错误(最上层的函数使用nonlocal修饰变量必定会报错)。第二,两者使用的范围不同。global关键字可以用在任何地方,包括最上层函数中和嵌套函数中,即使之前未定义该变量,global修饰后也可以直接使用,而nonlocal关键字只能用于嵌套函数中,并且外层函数中定义了

  • 机器学习小组知识点10:多项式分布(Mutibinomial distribution)

    机器学习小组知识点10:多项式分布(Mutibinomial distribution)介绍把二项分布公式再推广,就得到了多项分布。二项分布的典型例子是扔硬币,硬币正面朝上概率为pp,重复扔nn次硬币,kk次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实验定义)把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是16\frac{1}{6}(对应p1p_1至p6p_6,它们的值不一定都是16\f

  • yuicompressor java_YUI Compressor使用配置方法 JS/CSS压缩工具

    yuicompressor java_YUI Compressor使用配置方法 JS/CSS压缩工具YUICompressor是一个用来压缩JS和CSS文件的工具,采用Java开发。YUICompressor下载地址:https://www.jb51.net/softs/25860.html使用方法://压缩JSjava-jaryuicompressor-2.4.2.jar–typejs–charsetutf-8-vsrc.js>packed.js//…

  • 获取的string转JSONArray或JSONObject

    获取的string转JSONArray或JSONObject² 返回值:JSON格式字符串{“serviceId”:”3c.park.queryparkstandard”,”resultCode”:0,”message”:”成功”,”dataItems”:[{“objectId”:””,”operateType”:”READ”,”attributes”:{“parkCode”:”park01″,

  • triggerEvent_研究儿童通用的方法

    triggerEvent_研究儿童通用的方法假设有一个id为testA的a元素,然后有以下代码(jquery已存在):$(document).ready(function(){ $(‘#testA’).on(‘testEvent’,function(e,data1,data2,data3){ console.log(e,data1,data2,data3); }); varba=documen…

  • mysql截取前几个字符串_MySQL 截取字符串函数的sql语句

    mysql截取前几个字符串_MySQL 截取字符串函数的sql语句1、left(name,4)截取左边的4个字符列:SELECTLEFT(201809,4)年结果:20182、right(name,2)截取右边的2个字符SELECTRIGHT(201809,2)月份结果:093、SUBSTRING(name,5,3)截取name这个字段从第五个字符开始只截取之后的3个字符SELECTSUBSTRING(‘成都融资事业部’,5,3)结果:事业部4、…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号