NativeScaler()与loss_scaler

NativeScaler()与loss_scaler源码:classNativeScaler:state_dict_key=”amp_scaler”def__init__(self):self._scaler=torch.cuda.amp.GradScaler()def__call__(self,loss,optimizer,clip_grad=None,clip_mode=’norm’,parameters=None,create_graph=False):

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

源码:

class NativeScaler:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if clip_grad is not None:
            assert parameters is not None
            self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
            dispatch_clip_grad(parameters, clip_grad, mode=clip_mode)
        self._scaler.step(optimizer)
        self._scaler.update()

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)

Jetbrains全家桶1年46,售后保障稳定

loss_scaler 函数,它的作用本质上是 loss.backward(create_graph=create_graph) 和 optimizer.step()。

loss_scaler 继承 NativeScaler 这个类。这个类的实例在调用时需要传入 loss, optimizer, clip_grad, parameters, create_graph 等参数,在 __call__ () 函数的内部实现了 loss.backward(create_graph=create_graph) 功能和 optimizer.step() 功能。

例子使用:

from timm.utils import NativeScaler

loss_scaler = NativeScaler()
loss_scaler(loss_G, optimizer, parameters=model_restoration.parameters())

代码等价: 

loss_G.backward()
optimizer.step()
等价于下面的代码:
loss_scaler(loss_G, optimizer, parameters=model_restoration.parameters())
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/215508.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号