Z—score模型公式计算_Prim算法

Z—score模型公式计算_Prim算法算法介绍:zbar算法是现在网上开源的条形码,二维码检测算法,算法可识别大部分种类的一维码(条形码),比如I25,CODE39,CODE128,不过大家更关心的应该是现在很火的QR码的解码效率,随着现在生活中QR码的普及,扫码支付等行为越来越多的被人们接受,关于QR码是什么,QR码的解码流程是什么样的。本篇文章就互联网上的一个开源解码算法zbar进行简单剖析。源码可以在网上搜到,或者去gi

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

算法介绍:

zbar算法是现在网上开源的条形码,二维码检测算法,算法可识别大部分种类的一维码(条形码),比如I25,CODE39,CODE128,不过大家更关心的应该是现在很火的QR码的解码效率,随着现在生活中QR码的普及,扫码支付等行为越来越多的被人们接受,关于QR码是什么,QR码的解码流程是什么样的。本篇文章就互联网上的一个开源解码算法zbar进行简单剖析。

源码可以在网上搜到,或者去github上clone到本地:Zbar/Zbar

流程图:

先上一个流程图:

Z—score模型公式计算_Prim算法

算法流程介绍:

首先是算法的初始化,构造一个扫描器ImageScanner对象,并使用其set_config()方法对扫描器进行初始化:

ImageScanner scanner;
// configure the reader
scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1);

Jetbrains全家桶1年46,售后保障稳定

接下来是载入图像,可以使用 ImageMagick 和 OpenCV 读取图片文件,并将其转换为灰度图像,以下以 OpenCV 为例:

IplImage *img = cvLoadImage("E:\\ 文档 \\ 测试素材 _ 一维码二维码 \\QRCODE\\2-1.jpg");
IplImage *imgGray = cvCreateImage(cvGetSize(img), 8, 1);
cvCvtColor(img, imgGray, CV_RGB2GRAY);

构造一个图像Image对象,并调用其构造函数对其进行初始化:

int width = imgGray->widthStep;
int height = imgGray->height;
Image image(width, height, "Y800", imgGray->imageData, width * height);

图像解析,通过调用图像扫描器对象的scan()方法,对图像对象进行处理:

int n = scanner.scan(image);

图像扫描,扫描器对象公有方法scan()主要为zbar_scan_image()函数,函数首先对传入的图像进行配置校验,然后对传入图像先进行逐行扫描,扫描路径为 Z 字

型:

while(y < h) {
    iscn->dx = iscn->du = 1;
    iscn->umin = 0;
    while(x < w) {
        uint8_t d = *p;
        movedelta(1, 0);
        zbar_scan_y(scn, d);
    }
    quiet_border(iscn);
    movedelta(-1, density);
    iscn->v = y;
    if(y >= h)
        break;
    iscn->dx = iscn->du = -1;
    iscn->umin = w;
    while(x >= 0) {
        uint8_t d = *p;
        movedelta(-1, 0);
        zbar_scan_y(scn, d);
    }
    ASSERT_POS;
    quiet_border(iscn);
    movedelta(1, density);
    iscn->v = y;
}

扫描的主要函数为zbar_scan_y(),在函数内部,以一个像素点为增量在一行内一点一点扫描过去,并且完成滤波,求取边缘梯度,梯度阈值自适应,

确定边缘,转化成明暗宽度流;其中确定边缘之后调用process_edge()函数:

if(y1_rev)
    edge = process_edge(scn, y1_1);

在process_edge()函数内部,使用当前边缘跟上一次保存下来的边缘相减得到一个宽度,并将其保存到扫描器结构变量scn中并将本次边缘信息保存下

来:

scn->width = scn->cur_edge - scn->last_edge;
scn->last_edge = scn->cur_edge;

之后对扫描器结构变量scn中保存下来的明暗宽度流进行处理,处理函数为zbar_decode_width(scn->decoder, scn->width),该函数内部处理对象为

当前行目前保存下来的宽度流,通过计算各宽度之间的宽度信息提取扫码特征,依次通过几种一维码二维码的检测标准,寻找到符合标准的扫码种类

时更新扫描器结构变量scn中的type成员,并且更新lock成员以增加当前种类判断的置信度(可以通过设置关掉其他种类的条码识别):

#ifdef ENABLE_EAN
    if((dcode->ean.enable) &&
    (sym = _zbar_decode_ean(dcode)))
        dcode->type = sym;
#endif
#ifdef ENABLE_CODE39
    if(TEST_CFG(dcode->code39.config, ZBAR_CFG_ENABLE) &&
    (sym = _zbar_decode_code39(dcode)) > ZBAR_PARTIAL)
    {
        dcode->type = sym;
    }
#endif
#ifdef ENABLE_CODE128
    if(TEST_CFG(dcode->code128.config, ZBAR_CFG_ENABLE) &&
    (sym = _zbar_decode_code128(dcode)) > ZBAR_PARTIAL)
        dcode->type = sym;
#endif
#ifdef ENABLE_I25
    if(TEST_CFG(dcode->i25.config, ZBAR_CFG_ENABLE) &&
    (sym = _zbar_decode_i25(dcode)) > ZBAR_PARTIAL)
        dcode->type = sym;
#endif
#ifdef ENABLE_PDF417
    if(TEST_CFG(dcode->pdf417.config, ZBAR_CFG_ENABLE) &&
    (sym = _zbar_decode_pdf417(dcode)) > ZBAR_PARTIAL)
        dcode->type = sym;
#endif
#ifdef ENABLE_QRCODE
    if(TEST_CFG(dcode->qrf.config, ZBAR_CFG_ENABLE) &&
    (sym = _zbar_find_qr(dcode)) > ZBAR_PARTIAL)
        dcode->type = sym;
#endif

以 QR 码为例子,函数_zbar_find_qr(dcode)内部对当前行的宽度流进行计算,判断是否符合下列特征:

qr_finder_t *qrf = &dcode->qrf;
qrf->s5 -= get_width(dcode, 6);
qrf->s5 += get_width(dcode, 1);
unsigned s = qrf->s5;
if(get_color(dcode) != ZBAR_SPACE || s < 7)
return ZBAR_NONE;
int ei = decode_e(pair_width(dcode, 1), s, 7);
if(ei)
goto invalid;
ei = decode_e(pair_width(dcode, 2), s, 7);
if(ei != 2)
goto invalid;
ei = decode_e(pair_width(dcode, 3), s, 7);
if(ei != 2)
goto invalid;
ei = decode_e(pair_width(dcode, 4), s, 7);
if(ei)
goto invalid;
invalid:
return ZBAR_NONE;

符合当前特征的即判断其不为 QR 码,如果不符合,将当前宽度流描述为一个自定义的线段结构,包含两端端点及长度等信息,并将满足条件的横向线段结构变量存入一个容器lines的横向线段集合中。 对整幅图像的逐列扫描同逐行扫描一样,扫描路径为 N 字型,同样通过函数zbar_scan_y()和process_edge()进行处理找边缘最后求取出纵向的明暗高度流,通过zbar_decode_width(scn->decoder, scn->width)函数进行处理,将符合 QR 码的纵向线段存入lines的纵向线段集合中。

QR码解析,QR 码解析模块的入口为函数_zbar_qr_decode(iscn->qr, iscn, img),函数内部结构如下:

int nqrdata = 0;
qr_finder_edge_pt *edge_pts = NULL;
qr_finder_center *centers = NULL;
if(reader->finder_lines[0].nlines < 9 ||
reader->finder_lines[1].nlines < 9)
return(0);
int ncenters = qr_finder_centers_locate(¢ers, &edge_pts, reader, 0, 0);
if(ncenters >= 3) {
void *bin = qr_binarize((unsigned char*)img->data, img->width, img->height);
qr_code_data_list qrlist;
qr_code_data_list_init(&qrlist);
qr_reader_match_centers(reader, &qrlist, centers, ncenters,
(unsigned char*)bin, img->width, img->height);
if(qrlist.nqrdata > 0)
nqrdata = qr_code_data_list_extract_text(&qrlist, iscn, img);
qr_code_data_list_clear(&qrlist);
free(bin);
}
if(centers)
free(centers);
if(edge_pts)
free(edge_pts);
return(nqrdata);

首先第一步需要求出 QR 码的三个定位图案的中心,需要对之前求出的横向,纵向线段集合进行筛选,聚类和求取交叉点:

int ncenters = qr_finder_centers_locate(¢ers, &edge_pts, reader, 0, 0);

函数返回的是共找到多少个交叉点,如果小于三个则此图像无法进行 QR 码解析。 之后对图像进行自适应二值化处理:

void *bin = qr_binarize((unsigned char*)img->data, img->width, img->height);

之后就是解码的主要组成部分,对 QR 码进行码字读取:

qr_reader_match_centers(reader, &qrlist, centers, ncenters,(unsigned char*)bin, img->width, img->height);

函数首先对找到的交叉点按时针顺序进行排序,三个点进行仿射变化求出 QR 码模块宽度(所占像素个数):

version=qr_reader_try_configuration(_reader,&qrdata,_img,_width,_height,c);

函数返回值为 QR 码的版本数,并且求出了 QR 码的版本码字和模块宽度(根据三个交叉点处于同边的两个点来计算,仿射变化有单应性仿射 affine homography 和全矩阵仿射 full homography ),将所求得的所有结果进行计算和比对,最终的出 QR 码的版本结果,还需要判断求出结果数是否大于等于 7 。如果是,求得的版本信息是经过编码后的信息,版本号还需要解码;如果小于 7 ,求出来的结果即是 QR 码的版本号:

if(ur.eversion[1]==dl.eversion[0]&&ur.eversion[1]<7){
ur_version=ur.eversion[1];
}
else{
if(abs(ur.eversion[1]-dl.eversion[0])>QR_LARGE_VERSION_SLACK)
continue;
}
if(ur.eversion[1]>=7-QR_LARGE_VERSION_SLACK){
ur_version=qr_finder_version_decode(&ur,&hom,_img,_width,_height,0);
if(abs(ur_version-ur.eversion[1])>QR_LARGE_VERSION_SLACK)
ur_version=-1;
}
else
ur_version=-1;
if(dl.eversion[0]>=7-QR_LARGE_VERSION_SLACK){
dl_version=qr_finder_version_decode(&dl,&hom,_img,_width,_height,1);
if(abs(dl_version-dl.eversion[0])>QR_LARGE_VERSION_SLACK)
dl_version=-1;
}
else
dl_version=-1;
if(ur_version>=0){
if(dl_version>=0&&dl_version!=ur_version)
continue;
}
else if(dl_version<0)
continue;
else
ur_version=dl_version;
}

之后求 QR 码的格式信息:

fmt_info=qr_finder_fmt_info_decode(&ul,&ur,&dl,&hom,_img,_width,_height);

格式信息求出来之后就是 QR 码的功能区到目前为止已全部识别并解码出结果,之后对 QR 码的数据区进行解析,函数为:

qr_code_decode(_qrdata,&_reader->gf,ul.c->pos,ur.c->pos,dl.c->pos,ur_version,fmt_info,_img,_width,_height)

函数注释为:

/*Attempts to fully decode a QR code.
_qrdata: Returns the parsed code data.
_gf: Used for Reed-Solomon error correction.
_ul_pos: The location of the UL finder pattern.
_ur_pos: The location of the UR finder pattern.
_dl_pos: The location of the DL finder pattern.
_version: The (decoded) version number.
_fmt_info: The decoded format info.
_img: The binary input image.
_width: The width of the input image.
_height: The height of the input image.
Return: 0 on success, or a negative value on error.*/
static int qr_code_decode(qr_code_data *_qrdata,const rs_gf256 *_gf,
const qr_point _ul_pos,const qr_point _ur_pos,const qr_point _dl_pos,
int _version,int _fmt_info,
const unsigned char *_img,int _width,int _height)

首先对对图像进行消除掩模处理,并且识别出图像中的定位图案:

qr_sampling_grid_init(&grid,_version,_ul_pos,_ur_pos,_dl_pos,_qrdata->bbox,_img,_width,_height);

然后将 QR 码除去功能区之外的区域转换为 0 和 1 的比特流:

qr_sampling_grid_sample(&grid,data_bits,dim,_fmt_info,_img,_width,_height);

使用 Reed-Solomon 纠错算法对提取出来的比特流进行校验和纠错,最后输出最终的识别比特流。 函数nqrdata = qr_code_data_list_extract_text(&qrlist, iscn, img);对求出的比特流进行分析判断,判断当前 QR 码属于什么编码模式,找到相应的编码模式后对比特流进行解码输出,最终求得 QR 码的解码结果。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/213516.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • aws亚马逊配置 https,操作步骤记录[通俗易懂]

    aws亚马逊配置 https,操作步骤记录

  • springboot使用swagger2生成api文档

    springboot使用swagger2生成api文档一、为什么要用Swagger2?之前开发项目的时候,需要写API文档,项目小接口少的时候一份word就能简单应付,但是随着项目的API的增加,对API文档的维护工作就会越来越繁琐,为此引入能自动生成

  • java四舍五入保留小数「建议收藏」

    java四舍五入保留小数「建议收藏」//方式一:doublef=3.1516;BigDecimalb=newBigDecimal(f);doublef1=b.setScale(2,BigDecimal.ROUND_HALF_UP).doubleValue(); //方式二:newjava.text.DecimalFormat("#.00").format(3.1415926);//#.00表示两位小数…

  • 关于SecureCRT及Vim的使用

    关于SecureCRT及Vim的使用听说大部分的搞网络或者被网络搞的同学,每天都会使用SecureCRT在Linux下进行开发、测试等工作。正所谓“工欲善其事,必先利其器”,一个趁手的开发环境对工作效率的提升是不言而喻的。我在这里简单介绍一下个人在日常使用中积累下来的常用设置及操作,希望对不熟悉的朋友能有一点点参考作用,一家之言,欢迎拍砖。【SecureCRT篇】1、 自动登录服务器如果我们需要经常登录固定某

  • python学习笔记——hashlib模块「建议收藏」

    python学习笔记——hashlib模块「建议收藏」上篇:https://blog.csdn.net/qq_42489308/article/details/89813895hashlibHash,译做“散列”,也有直接音译为“哈希”的。把任意长度的输入,通过某种hash算法,变换成固定长度的输出,该输出就是散列值,也称摘要值。该算法就是哈希函数,也称摘要函数。MD5是最常见的摘要算法,速度很快,生成结果是固定的16字节,通常用一个32…

  • 情商的研究

    情商EQ认识与提高情商(情绪、意志、性格、行为习惯组成的商数)情商(EmotionalQuotient)通常是指情绪商数,简称EQ,主要是指人在情绪、意志、耐受挫折等方面的品质,其包括导商(LQ)等。总的来讲,人与人之间的情商并无明显的先天差别,更多与后天的培养息息相关。它是近年来心理学家们提出的与智商相对应的概念。从最简单的层次上下定义,提高情商是把不能控制情绪的部分变为可以…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号