delphi多线程[通俗易懂]

delphi多线程[通俗易懂]   Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本上都是对TThread类的几个成员作一简单介绍,再说明一下Execute的实现和Synchronize的用法就完了。然而这并不是多线程编程的全部,我写此文的目的在于对此作一个补充。  线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

   Delphi中有一个线程类TThread是用来实现多线程编程的,这个绝大多数Delphi书藉都有说到,但基本上都是对TThread类的几个成员作一简单介绍,再说明一下Execute的实现和Synchronize的用法就完了。然而这并不是多线程编程的全部,我写此文的目的在于对此作一个补充。
    线程本质上是进程中一段并发运行的代码。一个进程至少有一个线程,即所谓的主线程。同时还可以有多个子线程。当一个进程中用到超过一个线程时,就是所谓的“多线程”。
    那么这个所谓的“一段代码”是如何定义的呢?其实就是一个函数或过程(对Delphi而言)。
    如果用Windows API来创建线程的话,是通过一个叫做CreateThread的API函数来实现的,它的定义为:

HANDLE CreateThread(
    LPSECURITY_ATTRIBUTES lpThreadAttributes,
    DWORD dwStackSize,
    LPTHREAD_START_ROUTINE lpStartAddress,
    LPVOID lpParameter,
    DWORD dwCreationFlags,
    LPDWORD lpThreadId
   );

    其各参数如它们的名称所说,分别是:线程属性(用于在NT下进行线程的安全属性设置,在9X下无效),堆栈大小,起始地址,参数,创建标志(用于设置线程创建时的状态),线程ID,最后返回线程Handle。其中的起始地址就是线程函数的入口,直至线程函数结束,线程也就结束了。
    整个线程的执行过程如下图所示:

    因为CreateThread参数很多,而且是Windows的API,所以在C Runtime Library里提供了一个通用的线程函数(理论上可以在任何支持线程的OS中使用):
    unsigned long _beginthread(void (_USERENTRY *__start)(void *), unsigned __stksize, void *__arg);

    Delphi也提供了一个相同功能的类似函数:
    function BeginThread(SecurityAttributes: Pointer; StackSize: LongWord; ThreadFunc: TThreadFunc; Parameter: Pointer; CreationFlags: LongWord; var ThreadId: LongWord): Integer;

 

  ThreadFunc:线程函数,

  BeginThread:线程启动函数。

    这三个函数的功能是基本相同的,它们都是将线程函数中的代码放到一个独立的线程中执行。线程函数与一般函数的最大不同在于,线程函数一开始执行,这三个线程启动函数就返回了,主线程继续向下执行,而线程函数在一个独立的线程中执行,它要执行多久,什么时候返回,主线程是不管也不知道的。
    正常情况下,线程函数返回后,线程就终止了。但也有其它方式:
//以下3个函数能主动终止线程,而使用TThread类则没法在线程的执行过程中终止线程
Windows API:
VOID ExitThread( DWORD dwExitCode );
C Runtime Library:
void _endthread(void);
Delphi Runtime Library:
procedure EndThread(ExitCode: Integer);

    为了记录一些必要的线程数据(状态/属性等),OS会为线程创建一个内部Object,如在Windows中那个Handle便是这个内部Object的Handle,所以在线程结束的时候还应该释放这个Object。

    虽然说用API或RTL(Runtime Library)已经可以很方便地进行多线程编程了,但是还是需要进行较多的细节处理,为此Delphi在Classes单元中对线程作了一个较好的封装,这就是VCL的线程类:TThread
    使用这个类也很简单,大多数的Delphi书籍都有说,基本用法是:先从TThread派生一个自己的线程类(因为TThread是一个抽象类,不能生成实例),然后是Override抽象方法:Execute(这就是线程函数,也就是在线程中执行的代码部分),如果需要用到可视VCL对象,还需要通过Synchronize过程来执行。关于之方面的具体细节,这里不再赘述,请参考相关书籍。
    本文接下来要讨论的是TThread类是如何对线程进行封装的,也就是深入研究一下TThread类的实现。因为只有是真正地了解了它,才更好地使用它。
    下面是DELPHI7中TThread类的声明(本文只讨论在Windows平台下的实现,所以去掉了所有有关Linux平台部分的代码):

  TThread = class

  private
    FHandle: THandle;
    FThreadID: THandle;
    FCreateSuspended: Boolean;
    FTerminated: Boolean;
    FSuspended: Boolean;
    FFreeOnTerminate: Boolean;
    FFinished: Boolean;
    FReturnValue: Integer;
    FOnTerminate: TNotifyEvent;
    FSynchronize: TSynchronizeRecord;//delphi help中找不到
    FFatalException: TObject;
    procedure CallOnTerminate;//调用在OnTerminate编写的代码
    class procedure Synchronize(ASyncRec: PSynchronizeRecord); overload;
    function GetPriority: TThreadPriority;
    procedure SetPriority(Value: TThreadPriority);
    procedure SetSuspended(Value: Boolean);

  protected
    procedure CheckThreadError(ErrCode: Integer); overload;
    procedure CheckThreadError(Success: Boolean); overload;
    procedure DoTerminate; virtual;//将会调用 CallOnTerminate
    procedure Execute; virtual; abstract;
    procedure Synchronize(Method: TThreadMethod); overload;
    property ReturnValue: Integer read FReturnValue write FReturnValue;
    property Terminated: Boolean read FTerminated;

  public
    constructor Create(CreateSuspended: Boolean);
    destructor Destroy; override;
    procedure AfterConstruction; override;
    procedure Resume;
    procedure Suspend;
    procedure Terminate;
    function WaitFor: LongWord;
    class procedure Synchronize(AThread: TThread; AMethod: TThreadMethod); overload;
    class procedure StaticSynchronize(AThread: TThread; AMethod: TThreadMethod);
    property FatalException: TObject read FFatalException;
    property FreeOnTerminate: Boolean read FFreeOnTerminate write FFreeOnTerminate;
    property Handle: THandle read FHandle;
    property Priority: TThreadPriority read GetPriority write SetPriority;
    property Suspended: Boolean read FSuspended write SetSuspended;
    property ThreadID: THandle read FThreadID;
    property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
  end;

    TThread类在Delphi的RTL里算是比较简单的类,类成员也不多,类属性都很简单明白,本文将只对几个比较重要的类成员方法和唯一的事件:OnTerminate作详细分析。
    首先就是构造函数:

constructor TThread.Create(CreateSuspended: Boolean);
begin
  inherited Create;
  AddThread;
  FSuspended := CreateSuspended;
  FCreateSuspended := CreateSuspended;
  FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);//BeginThread创建挂起线程,在AfterConstruction过程中才根据FCreateSuspended 确定是否执行
  if FHandle = 0 then
    raise EThread.CreateResFmt(@SThreadCreateError, [SysErrorMessage(GetLastError)]);

end;

    虽然这个构造函数没有多少代码,但却可以算是最重要的一个成员,因为线程就是在这里被创建的。
在通过Inherited调用TObject.Create后,第一句就是调用一个过程:AddThread,其源码如下:

procedure AddThread;
begin
  InterlockedIncrement(ThreadCount);  //此为kernel32内核函数的调用
end;

    同样有一个对应的RemoveThread:
procedure RemoveThread;
begin
  InterlockedDecrement(ThreadCount);
end;

 

ThreadCount为全却变量

    它们的功能很简单,就是通过增减一个全局变量来统计进程中的线程数。只是这里用于增减变量的并不是常用的Inc/Dec过程,而是用了InterlockedIncrement/InterlockedDecrement这一对过程,它们实现的功能完全一样,都是对变量加一或减一。但它们有一个最大的区别,那就是InterlockedIncrement/InterlockedDecrement是线程安全的。即它们在多线程下能保证执行结果正确,而Inc/Dec不能。或者按操作系统理论中的术语来说,这是一对“原语”操作。
    以加一为例来说明二者实现细节上的不同:
    一般来说,对内存数据加一的操作分解以后有三个步骤:
    1、从内存中读出数据
    2、数据加一
    3、存入内存
    现在假设在一个两个线程的应用中用Inc进行加一操作可能出现的一种情况:
    1、线程A从内存中读出数据(假设为3)  
    2、线程B从内存中读出数据(也是3)
    3、线程A对数据加一(现在是4)
    4、线程B对数据加一(现在也是4)
    5、线程A将数据存入内存(现在内存中的数据是4)
    6、线程B也将数据存入内存(现在内存中的数据还是4,但两个线程都对它加了一,应该是5才对,所以这里出现了错误的结果)
    而用InterlockIncrement过程则没有这个问题,因为所谓“原语”是一种不可中断的操作,即操作系统能保证在一个“原语”执行完毕前不会进行线程切换。所以在上面那个例子中,只有当线程A执行完将数据存入内存后,线程B才可以开始从中取数并进行加一操作,这样就保证了即使是在多线程情况下,结果也一定会是正确的。
    前面那个例子也说明一种“线程访问冲突”的情况,这也就是为什么线程之间需要“同步”(Synchronize),关于这个,在后面说到同步时还会再详细讨论。
    说到同步,有一个题外话:加拿大滑铁卢大学的教授李明曾就Synchronize一词在“线程同步”中被译作“同步”提出过异议,个人认为他说的其实很有道理。在中文中“同步”的意思是“同时发生”,而“线程同步”目的就是避免这种“同时发生”的事情。而在英文中,Synchronize的意思有两个:一个是传统意义上的同步(To occur at the same time),另一个是“协调一致”(To operate in unison)。在“线程同步”中的Synchronize一词应该是指后面一种意思,即“保证多个线程在访问同一数据时,保持协调一致,避免出错”。不过像这样译得不准的词在IT业还有很多,既然已经是约定俗成了,本文也将继续沿用,只是在这里说明一下,因为软件开发是一项细致的工作,该弄清楚的,绝不能含糊。
    扯远了,回到TThread的构造函数上,接下来最重要就是这句了:

FHandle := BeginThread(nil, 0, @ThreadProc, Pointer(Self), CREATE_SUSPENDED, FThreadID);

    这里就用到了前面说到的Delphi RTL函数BeginThread,它有很多参数,关键的是第三、四两个参数。第三个参数就是前面说到的线程函数,即在线程中执行的代码部分。第四个参数则是传递给线程函数的参数,在这里就是创建的线程对象(即Self)。其它的参数中,第五个是用于设置线程在创建后即挂起,不立即执行(启动线程的工作是在AfterConstruction中根据CreateSuspended标志来决定的),第六个是返回线程ID。
    现在来看TThread的核心:线程函数ThreadProc。有意思的是这个线程类的核心却不是线程的成员,而是一个全局函数(因为BeginThread过程的参数约定只能用全局函数)。下面是它的代码:

 

ThreadProc为全局函数

function ThreadProc(Thread: TThread): Integer;
var
  FreeThread: Boolean;
begin
  try
    if not Thread.Terminated then
    try
      Thread.Execute;
    except
      Thread.FFatalException := AcquireExceptionObject;
    end;
  finally
    FreeThread := Thread.FFreeOnTerminate;
    Result := Thread.FReturnValue;
    Thread.DoTerminate;//标识FTerminated,表示线程已经终止运行
    Thread.FFinished := True;//标识线程代码已经执行完毕
    SignalSyncEvent;
    if FreeThread then Thread.Free;
    EndThread(Result);//使用RTL函数终止线程
  end;
end;

    虽然也没有多少代码,但却是整个TThread中最重要的部分,因为这段代码是真正在线程中执行的代码。下面对代码作逐行说明:
    首先判断线程类的Terminated标志,如果未被标志为终止,则调用线程类的Execute方法执行线程代码,因为TThread是抽象类,Execute方法是抽象方法,所以本质上是执行派生类中的Execute代码。
    所以说,Execute就是线程类中的线程函数,所有在Execute中的代码都需要当作线程代码来考虑,如防止访问冲突等。
    如果Execute发生异常,则通过AcquireExceptionObject取得异常对象,并存入线程类的FFatalException成员中。
    最后是线程结束前做的一些收尾工作。局部变量FreeThread记录了线程类的FreeOnTerminated属性的设置,然后将线程返回值设置为线程类的返回值属性的值。然后执行线程类的DoTerminate方法。
DoTerminate方法的代码如下:

procedure TThread.DoTerminate;
begin
  if Assigned(FOnTerminate) then Synchronize(CallOnTerminate);
end;

    很简单,就是通过Synchronize来调用CallOnTerminate方法,而CallOnTerminate方法的代码如下,就是简单地调用OnTerminate事件:

procedure TThread.CallOnTerminate;
begin
  if Assigned(FOnTerminate) then FOnTerminate(Self);
end;

    因为OnTerminate事件是在Synchronize中执行的,所以本质上它并不是线程代码,而是主线程代码(具体见后面对Synchronize的分析)。
    执行完OnTerminate后,将线程类的FFinished标志设置为True。
    接下来执行SignalSyncEvent过程,其代码如下:

procedure SignalSyncEvent;
begin
  SetEvent(SyncEvent);//SetEvent也是kernel32函数
end;
SyncEvent是全局变量

{ SyncEvent is an Event handle that is signaled every time a thread wishes to
  synchronize with the main thread or is terminating.  This handle us suitable
  for use with WaitForMultipleObjects.  When this object is signaled,
  CheckSynchronize *must* be called in order to reset the event.  Do not call
  ResetEvent on this handle, or background threads may hang waiting for
  Synchronize to return.
}

    也很简单,就是设置一下一个全局Event:SyncEvent,关于Event的使用,本文将在后文详述,而SyncEvent的用途将在WaitFor过程中说明。

    然后根据FreeThread中保存的FreeOnTerminate设置决定是否释放线程类,在线程类释放时,还有一些操作,详见接下来的析构函数实现。

    最后调用EndThread结束线程,返回线程返回值。

    至此,线程完全结束。

    说完构造函数,再来看析构函数:

destructor TThread.Destroy;

begin

  if (FThreadID <> 0) and not FFinished then

  begin

    Terminate;
//只是简单地设置线程类的Terminated标志

    if FCreateSuspended then

      Resume;

    WaitFor;
//其功能就是等待到线程结束后才继续向下执行
  end;

  if FHandle <> 0 then CloseHandle(FHandle);

  inherited Destroy;

  FFatalException.Free;

  RemoveThread;

end;

    在线程对象被释放前,首先要检查线程是否还在执行中,如果线程还在执行中(线程ID不为0,并且线程结束标志未设置),则调用Terminate过程结束线程。Terminate过程只是简单地设置线程类的Terminated标志,如下面的代码:

procedure TThread.Terminate;

begin

  FTerminated := True;

end;

    所以线程仍然必须继续执行到正常结束后才行,而不是立即终止线程,这一点要注意。

    在这里说一点题外话:很多人都问过我,如何才能“立即”终止线程(当然是指用TThread创建的线程)。结果当然是不行!
终止线程的唯一办法就是让Execute方法执行完毕,所以一般来说,要让你的线程能够尽快终止,必须在Execute方法中在较短的时间内不断地检查Terminated标志,以便能及时地退出。这是设计线程代码的一个很重要的原则!

    当然如果你一定要能“立即”退出线程,那么TThread类不是一个好的选择,因为如果用API强制终止线程的话,最终会导致TThread线程对象不能被正确释放,在对象析构时出现Access Violation。这种情况你只能用API或RTL函数来创建线程。

    如果线程处于启动挂起状态,则将线程转入运行状态,然后调用WaitFor进行等待,其功能就是等待到线程结束后才继续向下执行。关于WaitFor的实现,将放到后面说明。

    线程结束后,关闭线程Handle(正常线程创建的情况下Handle都是存在的),释放操作系统创建的线程对象。

    然后调用TObject.Destroy释放本对象,并释放已经捕获的异常对象,最后调用RemoveThread减小进程的线程数。

    其它关于Suspend/Resume及线程优先级设置等方面,不是本文的重点,不再赘述。下面要讨论的是本文的另两个重点:Synchronize和WaitFor。

    但是在介绍这两个函数之前,需要先介绍另外两个线程同步技术:事件和临界区。

    事件(Event,
是操作系统为实现多线程而设立的相关机制)与Delphi中的事件有所不同。从本质上说,Event其实相当于一个全局的布尔变量。它有两个赋值操作:Set和Reset,相当于把它设置为True或False。而检查它的值是通过WaitFor操作进行。对应在Windows平台上,是三个API函数:SetEvent、ResetEvent、WaitForSingleObject(实现WaitFor功能的API还有几个,这是最简单的一个)。

    这三个都是原语,所以Event可以实现一般布尔变量不能实现的在多线程中的应用。Set和Reset的功能前面已经说过了,现在来说一下

 

WaitFor的功能:
    WaitFor的功能是检查Event(即全局SyncEvent)的状态是否是Set状态(相当于True),如果是则立即返回,如果不是,则等待它变为Set状态,在等待期间,调用WaitFor的线程处于挂起状态。另外WaitFor有一个参数用于超时设置,如果此参数为0,则不等待,立即返回Event的状态,如果是INFINITE则无限等待,直到Set状态发生,若是一个有限的数值,则等待相应的毫秒数后返回Event的状态。
    当Event从Reset状态向Set状态转换时,唤醒其它由于WaitFor这个Event而挂起的线程,这就是它为什么叫Event的原因。所谓“事件”就是指“状态的转换”。通过Event可以在线程间传递这种“状态转换”信息。
    当然用一个受保护(见下面的临界区介绍)的布尔变量也能实现类似的功能,只要用一个循环检查此布尔值的代码来代替WaitFor即可。从功能上说完全没有问题,但实际使用中就会发现,这样的等待会占用大量的CPU资源,降低系统性能,影响到别的线程的执行速度,所以是不经济的,有的时候甚至可能会有问题。所以不建议这样用。
    临界区(CriticalSection)则是一项共享数据访问保护的技术。它其实也是相当于一个全局的布尔变量。但对它的操作有所不同,它只有两个操作:Enter和Leave,同样可以把它的两个状态当作True和False,分别表示现在是否处于临界区中。这两个操作也是原语,所以它可以用于在多线程应用中保护共享数据,防止访问冲突。
    用临界区保护共享数据的方法很简单:在每次要访问共享数据之前调用Enter设置进入临界区标志,然后再操作数据,最后调用Leave离开临界区。它的保护原理是这样的:当一个线程进入临界区后,如果此时另一个线程也要访问这个数据,则它会在调用Enter时,发现已经有线程进入临界区,然后此线程就会被挂起,等待当前在临界区的线程调用Leave离开临界区,当另一个线程完成操作,调用Leave离开后,此线程就会被唤醒,并设置临界区标志,开始操作数据,这样就防止了访问冲突。
    以前面那个InterlockedIncrement为例,我们用CriticalSection(Windows API)来实现它:

Var
  InterlockedCrit : TRTLCriticalSection;
Procedure InterlockedIncrement( var aValue : Integer );
Begin
  EnterCriticalSection( InterlockedCrit );
  Inc( aValue );
  LeaveCriticalSection( InterlockedCrit );
End;

    现在再来看前面那个例子:
    1.线程A进入临界区(假设数据为3)
    2.线程B进入临界区,因为A已经在临界区中,所以B被挂起
    3.线程A对数据加一(现在是4)
    4.线程A离开临界区,唤醒线程B(现在内存中的数据是4)
    5.线程B被唤醒,对数据加一(现在就是5了)
    6.线程B离开临界区,现在的数据就是正确的了。
    临界区就是这样保护共享数据的访问。
    关于临界区的使用,有一点要注意:即数据访问时的异常情况处理。因为如果在数据操作时发生异常,将导致Leave操作没有被执行,结果将使本应被唤醒的线程未被唤醒,可能造成程序的没有响应。所以一般来说,如下面这样使用临界区才是正确的做法:

EnterCriticalSection
Try
   //  操作临界区数据
Finally
  LeaveCriticalSection
End;

    最后要说明的是,Event和CriticalSection都是操作系统资源,使用前都需要创建,使用完后也同样需要释放。如TThread类用到的一个全局Event:SyncEvent和全局CriticalSection:TheadLock,都是在InitThreadSynchronization和DoneThreadSynchronization中进行创建和释放的,而它们则是在Classes单元的Initialization和Finalization中被调用的。
    由于在TThread中都是用API来操作Event和CriticalSection的,所以前面都是以API为例,其实Delphi已经提供了对它们的封装,在SyncObjs单元中,分别是TEvent类和TCriticalSection类。用法也与前面用API的方法相差无几。因为TEvent的构造函数参数过多,为了简单起见,Delphi还提供了一个用默认参数初始化的Event类:TSimpleEvent。
    顺便再介绍一下另一个用于线程同步的类:TMultiReadExclusiveWriteSynchronizer,它是在SysUtils单元中定义的。据我所知,这是Delphi RTL中定义的最长的一个类名,还好它有一个短的别名:TMREWSync。至于它的用处,我想光看名字就可以知道了,我也就不多说了。
    有了前面对Event和CriticalSection的准备知识,可以正式开始讨论Synchronize和WaitFor了。
    我们知道,Synchronize是通过将部分代码放到主线程中执行来实现线程同步的,因为在一个进程中,只有一个主线程。先来看看Synchronize的实现:

procedure TThread.Synchronize(Method: TThreadMethod);
begin
  FSynchronize.FThread := Self;
  FSynchronize.FSynchronizeException := nil;
  FSynchronize.FMethod := Method;
  Synchronize(@FSynchronize);
end;

    其中FSynchronize是一个记录类型:
  PSynchronizeRecord = ^TSynchronizeRecord;
  TSynchronizeRecord = record
    FThread: TObject;
    FMethod: TThreadMethod;
    FSynchronizeException: TObject;
  end;

    用于进行线程和主线程之间进行数据交换,包括传入线程类对象,同步执行的方法及发生的异常。
    在Synchronize中调用了它的一个重载版本,而且这个重载版本比较特别,它是一个“类方法”。所谓类方法,是一种特殊的类成员方法,它的调用并不需要创建类实例,而是像构造函数那样,通过类名调用。之所以会用类方法来实现它,是因为为了可以在线程对象没有创建时也能调用它。不过实际中是用它的另一个重载版本(也是类方法)和另一个类方法StaticSynchronize。下面是这个Synchronize的代码:

class procedure TThread.Synchronize(ASyncRec: PSynchronizeRecord);
var
  SyncProc: TSyncProc;
begin
  if GetCurrentThreadID = MainThreadID then
    ASyncRec.FMethod
  else
  begin
    SyncProc.Signal := CreateEvent(nil, True, False, nil);
    try
      EnterCriticalSection(ThreadLock);
      try
        if SyncList = nil then
          SyncList := TList.Create;
        SyncProc.SyncRec := ASyncRec;
        SyncList.Add(@SyncProc);
        SignalSyncEvent;
        if Assigned(WakeMainThread) then
          WakeMainThread(SyncProc.SyncRec.FThread);
        LeaveCriticalSection(ThreadLock);
        try
          WaitForSingleObject(SyncProc.Signal, INFINITE);
        finally
          EnterCriticalSection(ThreadLock);
        end;
      finally
        LeaveCriticalSection(ThreadLock);
      end;
    finally
      CloseHandle(SyncProc.Signal);
    end;
    if Assigned(ASyncRec.FSynchronizeException) then raise ASyncRec.FSynchronizeException;
  end;
end;

    这段代码略多一些,不过也不算太复杂。
    首先是判断当前线程是否是主线程,如果是,则简单地执行同步方法后返回。
    如果不是主线程,则准备开始同步过程。
    通过局部变量SyncProc记录线程交换数据(参数)和一个Event Handle,其记录结构如下:

  TSyncProc = record
    SyncRec: PSynchronizeRecord;
    Signal: THandle;
  end;

    然后创建一个Event,接着进入临界区(通过全局变量ThreadLock进行,因为同时只能有一个线程进入Synchronize状态,所以可以用全局变量记录),然后就是把这个记录数据存入SyncList这个列表中(如果这个列表不存在的话,则创建它)。可见ThreadLock这个临界区就是为了保护对SyncList的访问,这一点在后面介绍CheckSynchronize时会再次看到。
    再接下就是调用SignalSyncEvent,其代码在前面介绍TThread的构造函数时已经介绍过了,它的功能就是简单地将SyncEvent作一个Set的操作。关于这个SyncEvent的用途,将在后面介绍WaitFor时再详述。
    接下来就是最主要的部分了:调用WakeMainThread事件进行同步操作。WakeMainThread是一个TNotifyEvent类型的全局事件。这里之所以要用事件进行处理,是因为Synchronize方法本质上是通过消息,将需要同步的过程放到主线程中执行,如果在一些没有消息循环的应用中(如Console或DLL)是无法使用的,所以要使用这个事件进行处理。
    而响应这个事件的是Application对象,下面两个方法分别用于设置和清空WakeMainThread事件的响应(来自Forms单元):

procedure TApplication.HookSynchronizeWakeup;
begin
  Classes.WakeMainThread := WakeMainThread;
end;

procedure TApplication.UnhookSynchronizeWakeup;
begin
  Classes.WakeMainThread := nil;
end;

    上面两个方法分别是在TApplication类的构造函数和析构函数中被调用。
    这就是在Application对象中WakeMainThread事件响应的代码,消息就是在这里被发出的,它利用了一个空消息来实现:

procedure TApplication.WakeMainThread(Sender: TObject);
begin
  PostMessage(Handle, WM_NULL, 0, 0);
end;

    而这个消息的响应也是在Application对象中,见下面的代码(删除无关的部分):
procedure TApplication.WndProc(var Message: TMessage);

begin
  try
    …
    with Message do
      case Msg of
        …
        WM_NULL:
          CheckSynchronize;
        …
  except
    HandleException(Self);
  end;
end;
    其中的CheckSynchronize也是定义在Classes单元中的,由于它比较复杂,暂时不详细说明,只要知道它是具体处理Synchronize功能的部分就好,现在继续分析Synchronize的代码。
    在执行完WakeMainThread事件后,就退出临界区,然后调用WaitForSingleObject开始等待在进入临界区前创建的那个Event。这个Event的功能是等待这个同步方法的执行结束,关于这点,在后面分析CheckSynchronize时会再说明。
    注意在WaitForSingleObject之后又重新进入临界区,但没有做任何事就退出了,似乎没有意义,但这是必须的!
    因为临界区的Enter和Leave必须严格的一一对应。那么是否可以改成这样呢:

        if Assigned(WakeMainThread) then
          WakeMainThread(SyncProc.SyncRec.FThread);
        WaitForSingleObject(SyncProc.Signal, INFINITE);
      finally
        LeaveCriticalSection(ThreadLock);
      end;

    上面的代码和原来的代码最大的区别在于把WaitForSingleObject也纳入临界区的限制中了。看上去没什么影响,还使代码大大简化了,但真的可以吗?
    事实上是不行!
    因为我们知道,在Enter临界区后,如果别的线程要再进入,则会被挂起。而WaitFor方法则会挂起当前线程,直到等待别的线程SetEvent后才会被唤醒。如果改成上面那样的代码的话,如果那个SetEvent的线程也需要进入临界区的话,死锁(Deadlock)就发生了(关于死锁的理论,请自行参考操作系统原理方面的资料)。
    死锁是线程同步中最需要注意的方面之一!
    最后释放开始时创建的Event,如果被同步的方法返回异常的话,还会在这里再次抛出异常。
    回到前面CheckSynchronize,见下面的代码:

function CheckSynchronize(Timeout: Integer = 0): Boolean;
var
  SyncProc: PSyncProc;
  LocalSyncList: TList;
begin
  if GetCurrentThreadID <> MainThreadID then
    raise EThread.CreateResFmt(@SCheckSynchronizeError, [GetCurrentThreadID]);
  if Timeout > 0 then
    WaitForSyncEvent(Timeout)
  else
    ResetSyncEvent;
  LocalSyncList := nil;
  EnterCriticalSection(ThreadLock);
  try
    Integer(LocalSyncList) := InterlockedExchange(Integer(SyncList), Integer(LocalSyncList));
    try
      Result := (LocalSyncList <> nil) and (LocalSyncList.Count > 0);
      if Result then
      begin
        while LocalSyncList.Count > 0 do
        begin
          SyncProc := LocalSyncList[0];
          LocalSyncList.Delete(0);
          LeaveCriticalSection(ThreadLock);
          try
            try
              SyncProc.SyncRec.FMethod;
            except
              SyncProc.SyncRec.FSynchronizeException := AcquireExceptionObject;
            end;
          finally
            EnterCriticalSection(ThreadLock);
          end;
          SetEvent(SyncProc.signal);
        end;
      end;
    finally
      LocalSyncList.Free;
    end;
  finally
    LeaveCriticalSection(ThreadLock);
  end;
end;

    首先,这个方法必须在主线程中被调用(如前面通过消息传递到主线程),否则就抛出异常。
    接下来调用ResetSyncEvent(它与前面SetSyncEvent对应的,之所以不考虑WaitForSyncEvent的情况,是因为只有在Linux版下才会调用带参数的CheckSynchronize,Windows版下都是调用默认参数0的CheckSynchronize)。
    现在可以看出SyncList的用途了:它是用于记录所有未被执行的同步方法的。因为主线程只有一个,而子线程可能有很多个,当多个子线程同时调用同步方法时,主线程可能一时无法处理,所以需要一个列表来记录它们。
    在这里用一个局部变量LocalSyncList来交换SyncList,这里用的也是一个原语:InterlockedExchange。同样,这里也是用临界区将对SyncList的访问保护起来。
    只要LocalSyncList不为空,则通过一个循环来依次处理累积的所有同步方法调用。最后把处理完的LocalSyncList释放掉,退出临界区。
    再来看对同步方法的处理:首先是从列表中移出(取出并从列表中删除)第一个同步方法调用数据。然后退出临界区(原因当然也是为了防止死锁)。
    接着就是真正的调用同步方法了。
    如果同步方法中出现异常,将被捕获后存入同步方法数据记录中。
    重新进入临界区后,调用SetEvent通知调用线程,同步方法执行完成了(详见前面Synchronize中的WaitForSingleObject调用)。
    至此,整个Synchronize的实现介绍完成。
    最后来说一下WaitFor,它的功能就是等待线程执行结束。其代码如下:

function TThread.WaitFor: LongWord;
var
  H: array[0..1] of THandle;
  WaitResult: Cardinal;
  Msg: TMsg;
begin
  H[0] := FHandle;
  if GetCurrentThreadID = MainThreadID then
  begin
    WaitResult := 0;
    H[1] := SyncEvent;
    repeat
      { This prevents a potential deadlock if the background thread
        does a SendMessage to the foreground thread }
      if WaitResult = WAIT_OBJECT_0 + 2 then
        PeekMessage(Msg, 0, 0, 0, PM_NOREMOVE);
      WaitResult := MsgWaitForMultipleObjects(2, H, False, 1000, QS_SENDMESSAGE);
      CheckThreadError(WaitResult <> WAIT_FAILED);
      if WaitResult = WAIT_OBJECT_0 + 1 then
        CheckSynchronize;
    until WaitResult = WAIT_OBJECT_0;
  end else WaitForSingleObject(H[0], INFINITE);
  CheckThreadError(GetExitCodeThread(H[0], Result));
end;

    如果不是在主线程中执行WaitFor的话,很简单,只要调用WaitForSingleObject等待此线程的Handle为Signaled状态即可。
如果是在主线程中执行WaitFor则比较麻烦。首先要在Handle数组中增加一个SyncEvent,然后循环等待,直到线程结束(即MsgWaitForMultipleObjects返回WAIT_OBJECT_0,详见MSDN中关于此API的说明)。
    在循环等待中作如下处理:如果有消息发生,则通过PeekMessage取出此消息(但并不把它从消息循环中移除),然后调用MsgWaitForMultipleObjects来等待线程Handle或SyncEvent出现Signaled状态,同时监听消息(QS_SENDMESSAGE参数,详见MSDN中关于此API的说明)。可以把此API当作一个可以同时等待多个Handle的WaitForSingleObject。如果是SyncEvent被SetEvent(返回WAIT_OBJECT_0 + 1),则调用CheckSynchronize处理同步方法。
    为什么在主线程中调用WaitFor必须用MsgWaitForMultipleObjects,而不能用WaitForSingleObject等待线程结束呢?因为防止死锁。由于在线程函数Execute中可能调用Synchronize处理同步方法,而同步方法是在主线程中执行的,如果用WaitForSingleObject等待的话,则主线程在这里被挂起,同步方法无法执行,导致线程也被挂起,于是发生死锁。
    而改用WaitForMultipleObjects则没有这个问题。首先,它的第三个参数为False,表示只要线程Handle或SyncEvent中只要有一个Signaled即可使主线程被唤醒,至于加上QS_SENDMESSAGE是因为Synchronize是通过消息传到主线程来的,所以还要防止消息被阻塞。这样,当线程中调用Synchronize时,主线程就会被唤醒并处理同步调用,在调用完成后继续进入挂起等待状态,直到线程结束。
    至此,对线程类TThread的分析可以告一个段落了,对前面的分析作一个总结:
    1、线程类的线程必须按正常的方式结束,即Execute执行结束,所以在其中的代码中必须在适当的地方加入足够多的对Terminated标志的判断,并及时退出。如果必须要“立即”退出,则不能使用线程类,而要改用API或RTL函数。
    2、对可视VCL的访问要放在Synchronize中,通过消息传递到主线程中,由主线程处理。
    3、线程共享数据的访问应该用临界区进行保护(当然用Synchronize也行)。
    4、线程通信可以采用Event进行(当然也可以用Suspend/Resume)。
    5、当在多线程应用中使用多种线程同步方式时,一定要小心防止出现死锁。
    6、等待线程结束要用WaitFor方法。

 

 

———————————————————————-MY GOD——————————————————————–

在Delphi中,多线程的应用是比较多的内容,同时由于现在CPU中多核的发展,开发多线程程序也显得较为重要,对于多线程包含有几种状态(创建,运行,挂起,唤醒,销毁)如不清晰的请自己查找相关的资料查看.本文本是在多线程中重点需要注意的几个方面的问题进行说明

  1.使用Synchronize方法
  对VCL的访问只能在主线程中进行,这意味着
所有需要与用户打交道的代码都只能在主线程的环境中执行.通过TThread类中提供的Synchronize方法,可以实现此要求.对于此类的说明较多,不重点说明
  2.多线程的同步机制
  对于多线程的同步机制是说明的重点,主要是说明对于多线程几种同步的方式进行比较说明.在多线程中同步机制主要是采用Windows API函数提供的同步机制:临界区(Critical Section),互斥对象(Mutex)技术和信号量(Semaphore)技术.
 
(1)临界区(只能用来同步单个进程中的线程)
   临界区技术是指源代码不能有两个线程同时执行的部分,实际上临界区是一小段代码,一次只允许一个线程执行这段代码.在这段代码中可以执行以前要求对某些共享数据进行排它的存取.使用起来最为简单,但是它只能用来同步单个进程中的线程.临界区一次只允许一个线程取得对一个数据区的存取权.
  在使用临界区之前,必须使用InitializeCriticalSection过程进行初始化.其声明如下:
  procedure InitializeCriticalSection (var lpCriticalSection:TRTLCriticalSection);stdcall;
  使用临界区时可以使用EnterCriticalSection与LeaveCriticalSection来进行临界资源的管理
(2)互斥对象(可以被用来同步多个进程间的数据访问,如多程序访问打印机)
  它们可以被用来同步多个进程间的数据访问.互斥的一般使用流程是,进程必须首先用CreateMutex函数创建互斥对象,然后利用WaitForSingleObject进入互斥环境,当用到同步的代码执行完成后,用ReleaseMutex解除互斥关系,当所有线程访问完后,调用CloseHandle方法释放互斥对象.
  两个进程之间必须都用同一互斥对象的句柄.互斥对象实际上串行访问资源的全局对象.互斥对象不仅能在同一个程序下工作,而且可以在多个进程中同时工作.换句话说,它们既能够在单个应用程序下使两个或更多线程同步,也可以在不同的应用程序下进行多线程操作.
 
   注:临界区与互斥对象技术的区别如下:
  a.临界区调用的是EnterCriticalSection和LeaveCriticalSection,而互斥对象调用的是WaitForSingleObject和ReleaseMutex
  b.互斥对象可以用于跨进程边界同步线程
  c.我们可以给互斥对象取字符串类型的名字,对于一个已知的互斥对象,我们可以通过引用互斥对象的名字来使用它
 
 (3)信号量
  操作系统并不对某个线程拥有信号量进行跟踪.因此,一个线程等待某个信号量对象,观察由另一个线程来释放该信号量是可能的;另一个区别是,信号量有一个与之联系的资源计数,一个互斥对象只允许一个线程获得对它的访问许可,而一个信号量却允许多个线程同时获得对它的访问许可.
  信号量创建时使用CreateSeaphore来创建,调用WaitForSingleObject来计数值加1,用ReleaseSemphore来释放一个信号量,信号量的关闭采用CloseHandle进行处理
—————————————————————-OHH MY GOD——————————————————————-
一、临界区

所谓临界区,就是一次只能由一个线程来执行的一段代码。如果把初始化数组的代码放在临界区内,另一个线程在第一个线程处理完之前是不会被执行的。

使用临界区的步骤:

1、先声明一个全局变量类型为TRTLCriticalSection;

2、在线程Create()前调用InitializeCriticalSection()过程来初始化,该函数定义是:

void WINAPI InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

类型lpCriticalSection即是Delphi封装的TRTLCriticalSection。

3、在线程的需要放入临界区的代码前面使用EnterCriticalSection(lpCriticalSection)过程来开始建立临界区。在代码完成后用LeaveCriticalSection(lpCriticalSection)来标志临界区的结束。

4、在线程执行完后用DeleteCriticalSection(lpCriticalSection)来清除临界区。这个清除过程必须放在线程执行完后的地方,比如FormDesroy事件中。上面的例子中,若把该过程放在TMyThread.Create(False);后,会产生错误。

二、互斥:

互斥非常类似于临界区,除了两个关键的区别:首先,互斥可用于跨进程的线程同步。其次,互斥能被赋予一个字符串名字,并且通过引用此名字创建现有互斥对象的附加句柄。

提示临界区与事件对象(比如互斥对象)的最大的区别是在性能上。
临界区在没有线程冲突时,要用10~15个时间片,而事件对象由于涉及到系统内核要用400~600个时间片。

使用互斥的步骤:

1、声明一个类型为Thandle或Hwnd的全局变量,其实都是Cardinal类型。Hwnd是handle of window,主要用于窗口句柄;而Thandle则没有限制。

2、线程Create()前用CreateMutex()来创建一个互斥量。该函数定义为:

HANDLE WINAPI CreateMutex(

LPSECURITY_ATTRIBUTES lpMutexAttributes,

BOOL bInitialOwner,

LPCTSTR lpName:Pchar);

LPSECURITY_ATTRIBUTES参数为一个指向TSecurityAttributtes记录的指针。此参数设为nil,表示访问控制列表默认的安全属性。

bInitalOwner参数表示创建互斥对象的线程是否要成为此互斥对象的拥有者。当此参数为False时,表示互斥对象没有拥有者。

lpName参数指定互斥对象的名称。设为nil表示无命名,如果参数不是设为nil,函数会搜索是否有同名的互斥对象存在。如果有,函数就会返回同名互斥对象的句柄。否则,就新创建一个互斥对象并返回其句柄。

返回值是一handle。当错误发生时,返回null,此时用GetLastError函数可查看错误的信息。

利用CreateMutex()可以防止程序多个实例运行,如下例:

Program ABC;

Uses Forms,Windows,…;

{$R *.res}

Var

hMutex:Hwnd;

Begin

Application.Initialize;

hMutex:=CreateMutex(nil,False,Pchar(Application.Title));

if GetLastError<>ERROR_ALREADY_EXISTS then

begin

//项目要运行的咚咚

end;

ReleaseMutex(hMutex);

Application.Run;

End;

在本节的例程中,我们只是要防止线程进入同步代码区域中,所以lpName参数设置为nil。

3、在同步代码前用WaitForSingleObject()函数。该函数使得线程取得互斥对象(同步代码)的拥有权。该函数定义为:

DWORD WINAPI WaitForSingleObject(

HANDLE hHandle,

DWORD dwMilliseconds);

这个函数可以使当前线程在dwMilliseconds指定的时间内睡眠,直到hHandle参数指定的对象进入发信号状态为止。一个互斥对象不再被线程拥有时,它就进入发信号状态。当一个进程要终止时,它就进入发信号状态。dwMilliseconds参数可以设为0,这意味着只检查hHandle参数指定的对象是否处于发信号状态,而后立即返回。dwMilliseconds参数设为INFINITE,表示如果信号不出现将一直等下去。

这个函数的返回值含义:

WAIT_ABANDONED 指定的对象是互斥对象,并且拥有这个互斥对象的线程在没有释放此对象之前就已终止。此时就称互斥对象被抛弃。这种情况下,这个互斥对象归当前线程所有,并把它设为非发信号状态

WAIT_OBJECT_0 指定的对象处于发信号状态

WAIT_TIMEOUT 等待的时间已过,对象仍然是非发信号状态

再次声明,当一个互斥对象不再被一个线程所拥有,它就处于发信号状态。此时首先调用WaitForSingleObject()函数的线程就成为该互斥对象的拥有者,此互斥对象设为不发信号状态。当线程调用ReleaseMutex()函数并传递一个互斥对象的句柄作为参数时,这种拥有关系就被解除,互斥对象重新进入发信号状态。

注意除WaitForSingleObject()函数外,你还可以使用WaitForMultipleObject()和MsgWaitForMultipleObject()函数,它们可以等待几个对象变为发信号状态。这两个函数的详细情况请看Win32 API联机文档。

4、在同步代码结束后,使用ReleaseMutex(THandle)函数来标志。该函数只是用来解除线程与互斥对象的拥有关系,并不释放互斥对象的句柄。

5、调用CloseHandle(THandle)来关闭互斥对象。请注意例程中该函数的使用位置。

三、还有一种用信号量对象来管理线程同步的,它是在互斥的基础上建立的,但信号量增加了资源计数的功能,预定数目的线程允许同时进入要同步的代码。有点复杂,想不到在哪可以用,现在就不研究论了。

unit Tst_Thread3U;

interface

uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,Dialogs, StdCtrls;

type

TForm1 = class(TForm)

Button1: TButton;

Memo1: TMemo;

Button2: TButton;

Button3: TButton;

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

procedure Button3Click(Sender: TObject);

private

procedure ThreadsDone(Sender: TObject);

end;

TMyThread=class(TThread)

protected

procedure Execute;override;

end;

var

Form1: TForm1;

implementation

{$R *.dfm}

const

MaxSize=128;

var

NextNumber:Integer=0;

DoneFlags:Integer=0;

GlobalArry:array[1..MaxSize] of Integer;

Lock:byte; //1-不同步 2-临界区 3-互斥

CS:TRTLCriticalSection; //临界区

hMutex:THandle; //互斥

function GetNextNumber:Integer;

begin

Result:=NextNumber;

inc(NextNumber);

end;

procedure TMyThread.Execute;

var

i:Integer;

begin

FreeOnTerminate:=True; //终止后自动free

OnTerminate:=Form1.ThreadsDone;

if Lock<>3 then //非互斥情况

begin

if Lock=2 then EnterCriticalSection(CS); //建立临界区

for i := 1 to MaxSize do

begin

GlobalArry[i]:=GetNextNumber;

Sleep(5);

end;

if Lock=2 then LeaveCriticalSection(CS);//离开临界区

end else //——-互斥

begin

if WaitForSingleObject(hMutex,INFINITE)=WAIT_OBJECT_0 then

begin

for i := 1 to MaxSize do

begin

GlobalArry[i]:=GetNextNumber;

Sleep(5);

end;

end;

ReleaseMutex(hMutex); //释放

end;

end;

procedure TForm1.ThreadsDone(Sender: TObject);

var

i:Integer;

begin

Inc(DoneFlags);

if DoneFlags=2 then

begin

for i := 1 to MaxSize do

Memo1.Lines.Add(inttostr(GlobalArry[i]));

if Lock=2 then DeleteCriticalSection(CS); //删除临界区

If Lock=3 then CloseHandle(hMutex); //关闭互斥

end;

end;

//非同步

procedure TForm1.Button1Click(Sender: TObject);

begin

Lock:=1;

TMyThread.Create(False);

TMyThread.Create(False);

end;

//临界区

procedure TForm1.Button2Click(Sender: TObject);

begin

Lock:=2;

InitializeCriticalSection(CS); //初始化临界区

TMyThread.Create(False);

TMyThread.Create(False);

end;

//互斥

procedure TForm1.Button3Click(Sender: TObject);

begin

Lock:=3; // 互斥

hMutex:=CreateMutex(0,False,nil);

TMyThread.Create(False);

TMyThread.Create(False);

end;

end.

—————————————————————-my god—————————————————————–
       多核时代的到来,对于我们程序员来说要尽快的,尽可能多的使用多线程编程只有这样,作的程序才会有高效率,这个思想一定要宣传啊,不然多核时代了,还写单线程的程序就太不够档次了。

delphi中多线程同步的一些方法

当有多个线程的时候,经常需要去同步这些线程以访问同一个数据或资源。例如,假设有一个程序,其中一个线程用于把文件读到内存,而另一个线程用于统计文件中的字符数。当然,在把整个文件调入内存之前,统计它的计数是没有意义的。但是,由于每个操作都有自己的线程,操作系统会把两个线程当作是互不相干的任务分别执行,这样就可能在没有把整个文件装入内存时统计字数。为解决此问题,你必须使两个线程同步工作。

存在一些线程同步地址的问题,Win32提供了许多线程同步的方式。在本节你将看到使用临界区、 互斥、信号量和事件来解决线程同步的问题。

1. 临界区

临界区是一种最直接的线程同步方式。所谓临界区,就是一次只能由一个线程来执行的一段代码。如果把初始化数组的代码放在临界区内,另一个线程在第一个线程处理完之前是不会被执行的。

在使用临界区之前,必须使用InitializeCriticalSection()过程来初始化它。

其声明如下:

     procedure InitializeCriticalSection( var
lpCriticalSection参数是一个TRTLCriticalSection类型的记录,并且是变参。至于TRTLCriticalSection 是如何定义的,这并不重要,因为很少需要查看这个记录中的具体内容。只需要在lpCriticalSection中传递未初始化的记录,InitializeCriticalSection()过程就会填充这个记录。

注意Microsoft故意隐瞒了TRTLCriticalSection的细节。因为,其内容在不同的硬件平台上是不同的。在基于Intel的平台上,TRTLCriticalSection包含一个计数器、一个指示当前线程句柄的域和一个系统事件的句柄。在Alpha平台上,计数器被替换为一种Alpha-CPU 数据结构,称为spinlock。在记录被填充后,我们就可以开始创建临界区了。这时我们需要用EnterCriticalSection()和LeaveCriticalSection()来封装代码块。这两个过程的声明如下:
   

procedure EnterCriticalSection( var lpCriticalSection:TRRLCriticalSection);stdcall;

procedure LeaveCriticalSection( var

正如你所想的,参数lpCriticalSection就是由InitializeCriticalSection()填充的记录。

当你不需要TRTLCriticalSection记录时,应当调用DeleteCriticalSection()过程,下面是它的声明:

procedure DeleteCriticalSection( var

2. 互斥

互斥非常类似于临界区,除了两个关键的区别:首先,互斥可用于跨进程的线程同步。其次,互斥能被赋予一个字符串名字,并且通过引用此名字创建现有互斥对象的附加句柄。

提示临界区与事件对象(比如互斥对象)的最大的区别是在性能上。临界区在没有线程冲突时,要用1 0 ~ 1 5个时间片,而事件对象由于涉及到系统内核要用400~600个时间片。

可以调用函数CreateMutex ( )来创建一个互斥量。下面是函数的声明:

function

lpMutexAttributes参数为一个指向TSecurityAttributtes记录的指针。此参数通常设为0,表示默认的安全属性。bInitalOwner参数表示创建互斥对象的线程是否要成为此互斥对象的拥有者。当此参数为False时, 表示互斥对象没有拥有者。

lpName参数指定互斥对象的名称。设为nil表示无命名,如果参数不是设为nil,函数会搜索是否有同名的互斥对象存在。如果有,函数就会返回同名互斥对象的句柄。否则,就新创建一个互斥对象并返回其句柄。

当使用完互斥对象时,应当调用CloseHandle()来关闭它。

在程序中使用WaitForSingleObject()来防止其他线程进入同步区域的代码。此函数声明如下:

function

这个函数可以使当前线程在dwMilliseconds指定的时间内睡眠,直到hHandle参数指定的对象进入发信号状态为止。一个互斥对象不再被线程拥有时,它就进入发信号状态。当一个进程要终止时,它就进入发信号状态。dwMilliseconds参数可以设为0,这意味着只检查hHandle参数指定的对象是否处于发信号状态,而后立即返回。dwMilliseconds参数设为INFINITE,表示如果信号不出现将一直等下去。

这个函数的返回值如下

WaitFor SingleObject()函数使用的返回值

返回值 含义

WAIT_ABANDONED 指定的对象是互斥对象,并且拥有这个互斥对象的线程在没有释放此对象之前就已终止。此时就称互斥对象被抛弃。这种情况下,这个互斥对象归当前线程所有,并把它设为非发信号状态

WAIT_OBJECT_0 指定的对象处于发信号状态

WAIT_TIMEOUT等待的时间已过,对象仍然是非发信号状态再次声明,当一个互斥对象不再被一个线程所拥有,它就处于发信号状态。此时首先调用WaitForSingleObject()函数的线程就成为该互斥对象的拥有者,此互斥对象设为不发信号状态。当线程调用ReleaseMutex()函数并传递一个互斥对象的句柄作为参数时,这种拥有关系就被解除,互斥对象重新进入发信号状态。

注意除WaitForSingleObject()函数外,你还可以使用WaitForMultipleObject()和MsgWaitForMultipleObject()函数,它们可以等待几个对象变为发信号状态。这两个函数的详细情况请看Win32 API联机文档。

3. 信号量

另一种使线程同步的技术是使用信号量对象。它是在互斥的基础上建立的,但信号量增加了资源计数的功能,预定数目的线程允许同时进入要同步的代码。可以用CreateSemaphore()来创建一个信号量对象,其声明如下:

function

和CreateMutex()函数一样,CreateSemaphore()的第一个参数也是一个指向TSecurityAttribute s记录的指针,此参数的缺省值可以设为nil。

lInitialCount参数用来指定一个信号量的初始计数值,这个值必须在0和lMaximumCount之间。此参数大于0,就表示信号量处于发信号状态。当调用WaitForSingleObject()函数(或其他函数)时,此计数值就减1。当调用ReleaseSemaphore()时,此计数值加1。

参数lMaximumCount指定计数值的最大值。如果这个信号量代表某种资源,那么这个值代表可用资源总数。

参数lpName用于给出信号量对象的名称,它类似于CreateMutex()函数的lpName参数。

——————————————————————————————————————————

★★★关于线程同步:

Synchronize()是在一个隐蔽的窗口里运行,如果在这里你的任务很繁忙,你的主窗口会阻塞掉;Synchronize()只是将该线程的代码放到主线程中运行,并非线程同步。

临界区是一个进程里的所有线程同步的最好办法,他不是系统级的,只是进程级的,也就是说他可能利用进程内的一些标志来保证该进程内的线程同步,据Richter说是一个记数循环;临界区只能在同一进程内使用;临界区只能无限期等待,不过2k增加了TryEnterCriticalSection函数实现0时间等待。

互斥则是保证多进程间的线程同步,他是利用系统内核对象来保证同步的。由于系统内核对象可以是有名字的,因此多个进程间可以利用这个有名字的内核对象保证系统资源的线程安全性。互斥量是Win32 内核对象,由操作系统负责管理;互斥量可以使用WaitForSingleObject实现无限等待,0时间等待和任意时间等待。

1. 临界区

临界区是一种最直接的线程同步方式。所谓临界区,就是一次只能由一个线程来执行的一段代码。如果把初始化数组的代码放在临界区内,另一个线程在第一个线程处理完之前是不会被执行的。在使用临界区之前,必须使用InitializeCriticalSection()过程来初始化它。

在第一个线程调用了EnterCriticalSection()之后,所有别的线程就不能再进入代码块。下一个线程要等第一个线程调用LeaveCriticalSection()后才能被唤醒。

2. 互斥

互斥非常类似于临界区,除了两个关键的区别:首先,互斥可用于跨进程的线程同步。其次,互斥能被赋予一个字符串名字,并且通过引用此名字创建现有互斥对象的附加句柄。

提示:临界区与事件对象(比如互斥对象)的最大的区别是在性能上。临界区在没有线程冲突时,要用10 ~ 15个时间片,而事件对象由于涉及到系统内核要用400~600个时间片。

当一个互斥对象不再被一个线程所拥有,它就处于发信号状态。此时首先调用WaitForSingleObject()函数的线程就成为该互斥对象的拥有者,此互斥对象设为不发信号状态。当线程调用ReleaseMutex()函数并传递一个互斥对象的句柄作为参数时,这种拥有关系就被解除,互斥对象重新进入发信号状态。

可以调用函数CreateMutex()来创建一个互斥量。当使用完互斥对象时,应当调用CloseHandle()来关闭它。

3. 信号量

另一种使线程同步的技术是使用信号量对象。它是在互斥的基础上建立的,但信号量增加了资源计数的功能,预定数目的线程允许同时进入要同步的代码。可以用CreateSemaphore()来创建一个信号量对象,

因为只允许一个线程进入要同步的代码,所以信号量的最大计数值(lMaximumCount)要设为1。ReleaseSemaphore()函数将使信号量对象的计数加1;

记住,最后一定要调用CloseHandle()函数来释放由CreateSemaphore()创建的信号量对象的句柄。

★★★WaitForSingleObject函数的返值:

WAIT_ABANDONED指定的对象是互斥对象,并且拥有这个互斥对象的线程在没有释放此对象之前就已终止。此时就称互斥对象被抛弃。这种情况下,这个互斥对象归当前线程所有,并把它设为非发信号状态;

WAIT_OBJECT_0 指定的对象处于发信号状态;

WAIT_TIMEOUT等待的时间已过,对象仍然是非发信号状态;

——————————————————————————————————————————————

VCL支持三种技术来达到这个目的:

(2) 使用critical区

如果对象没有提高内置的锁定功能,需要使用critical区,Critical区在同一个时间只也许一个线程进入。为了使用Critical区,产生一个TCriticalSection全局的实例。TcriticalSection有两个方法,Acquire(阻止其他线程执行该区域)和Release(取消阻止)

  每个Critical区是与你想要保护的全局内存相关联。每个访问全局内存的线程必须首先使用Acquire来保证没有其他线程使用它。完成以后,线程调用Release方法,让其他线程也可以通过调用Acquire来使用这块全局内存。

  警告:Critical区只有在所有的线程都使用它来访问全局内存,如果有线程直接调用内存,而不通过Acquire,会造成同时访问的问题。例如:LockXY是一个全局的Critical区变量。任何一个访问全局X, Y的变量的线程,在访问前,都必须使用Acquire

LockXY .Acquire; { lock out other threads }

try

Y := sin(X);

finally

LockXY .Release;

end

临界区主要是为实现线程之间同步的,但是使用的时候注意,一定要在用此临界对象同步的线程之外建立该对象(一般在主线程中建立临界对象)。

————————————————————————————————————————————————

线程同步使用临界区,进程同步使用互斥对象。

Delphi中封装了临界对象。对象名为TCriticalSection,使用的时候只要在主线程当中建立这个临界对象(注意一定要在需要同步的线程之外建立这个对象)。具体同步的时候使用Lock和Unlock即可。

而进程间同步建立互斥对象,则只需要建立一个互斥对象CreateMutex. 需要同步的时候只需要WaitForSingleObject(mutexhandle, INFINITE) unlock的时候只需要ReleaseMutex(mutexhandle);即可。

有很多方法, 信号灯, 临界区, 互斥对象,此外, windows下还可以用全局原子,共享内存等等. 在windows体系中, 读写一个8位整数时原子的, 你可以依靠这一点完成互斥的方法. 对于能够产生全局名称的方法能够可以在进程间同步上(如互斥对象), 也可以用在线程间同步上;不能够产生全局名称的方法(如临界区)只能用在线程间同步上.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/200716.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Java四舍五入计算

    Java四舍五入计算java四舍五入计算。

  • 图像滤波算法总结[通俗易懂]

    图像滤波算法总结[通俗易懂]该篇主要是对图像滤波算法一个整理,主要参考的大神的博客:https://blog.csdn.net/qq_15606489/article/details/527554441:图像滤波既可以在实域进行,也可以在频域进行。图像滤波可以更改或者增强图像。通过滤波,可以强调一些特征或者去除图像中一些不需要的部分。滤波是一个邻域操作算子,利用给定像素周围的像素的值决定此像素的最终的输出值。图像…

  • 优先级队列(Priority Queue)「建议收藏」

    优先级队列(Priority Queue)「建议收藏」优先级队列(PriorityQueue)注:队列是一种特征为FIFO的数据结构,每次从队列中取出的是最早加入队列中的元素。但是,许多应用需要另一种队列,每次从队列中取出的应是具有最高优先权的元素,这种队列就是优先级队列(PriorityQueue),也称为优先权队列。1.优先级队列的概念1.1优先级队列的定义优先级队列是不同于先进先出队列的另一种队列。每次从队列中取出的是具有最高优先权的元素。

  • 集合类型python_python需要学哪些

    集合类型python_python需要学哪些集合集合的特点:是一种可迭代的、无序的、不能包含重复元素的数据结构去重b=[10,5,6,1,9,1]c=set(b)print(c)>>>{1,5

  • selinux 开启和关闭

    selinux 开启和关闭

  • http协议与tcp协议区别[通俗易懂]

    http协议与tcp协议区别[通俗易懂]http协议与tcp协议区别1、性质不同:http是一个简单的请求-响应协议。TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议。2、连接不同:TCP连接到不同但互连的计算机通信网络的主计算机中的成对进程之间依靠TCP提供可靠的通信服务。http通常运行在TCP之上。指定了客户端可能发送给服务器什么样的消息以及得到什么样的响应。3、功能不同:当应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,TCP则把数据流分割成适当长度的报文段,最大传输段大小(MSS)通常受该计算机连接的网

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号