遗传算法经典实例_遗传算法优化BP神经网络

遗传算法经典实例_遗传算法优化BP神经网络下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。      例:求下述二元函数的最大值: (1)个体编码          遗传算法的运算对象是表示个体的符号串,所以必须把变量x1,x2编码为一种      符号串。本题中,用无符号二进制整数来表示。          因x1,x2为0~7之间的整数,所以分别用3位无符号二进制整数来表示,将它      …

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

下面用手工计算来简单地模拟遗传算法的各
个主要执行步骤。
  
     例:求下述二元函数的最大值:

遗传算法经典实例_遗传算法优化BP神经网络

 (1) 个体编码
           遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种
       符号串。本题中,用无符号二进制整数来表示。
           因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它
       们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可
       行解。
           例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。
           个体的表现型x和基因型X之间可通过编码和解码程序相互转换。

(2) 初始群体的产生
          遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始
      群体数据。
         本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机
     方法产生。
          如:011101,101011,011100,111001
         
 (3) 适应度汁算
          遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传
       机会的大小。
          本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接
       利用目标函数值作为个体的适应度。

 (4)  选择运算
          选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代
      群体中。                   
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中
     的数量。其具体操作过程是:
         •  先计算出群体中所有个体的适应度的总和  fi  ( i=1.2,…,M );
         •  其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传
             到下一代群体中的概率,
         •  每个概率值组成一个区域,全部概率值之和为1;
         •  最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区
             域内来确定各个个体被选中的次数。

遗传算法经典实例_遗传算法优化BP神经网络

(5)  交叉运算
        交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某
    两个个体之间的部分染色体。
       本例采用单点交叉的方法,其具体操作过程是:
       • 先对群体进行随机配对;
       • 其次随机设置交叉点位置;
       • 最后再相互交换配对染色体之间的部分基因。

遗传算法经典实例_遗传算法优化BP神经网络

(6)  变异运算
         变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进
     行改变,它也是产生新个体的一种操作方法。
        本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是:
        • 首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置,
          其中的数字表示变异点设置在该基因座处;
        • 然后依照某一概率将变异点的原有基因值取反。

遗传算法经典实例_遗传算法优化BP神经网络

对群体P(t)进行一轮选择、交叉、变异运算之后可得到新一代的群体p(t+1)。

遗传算法经典实例_遗传算法优化BP神经网络

从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得
    到了明显的改进。事实上,这里已经找到了最佳个体“111111”。       
[注意]      
      需要说明的是,表中有些栏的数据是随机产生的。这里为了更好地说明问题,
 我们特意选择了一些较好的数值以便能够得到较好的结果,而在实际运算过程中
 有可能需要一定的循环次数才能达到这个最优结果。
遗传算法经典实例_遗传算法优化BP神经网络

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/197602.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • ALSA的pulse插件_pulseaudio启动

    ALSA的pulse插件_pulseaudio启动此博文为记录我初次进行树莓派开发语音唤醒时遇到的问题以及解决方法,如果有更好的方法,欢迎讨论。问题一描述:我在进行snowboy的安装过程中,所有的程序能够正常运行,也能正常录音以及音频输出,但是树莓派重启后,我运行之前设置好的程序,程序依然能够运行,但不能进行正常的唤醒。我查了/.asoundrc没有问题,录音设备和音频输出设备也是正常的状态,在系统中也能列出。问题一解决:经过多次重装系统(因为我的树莓派不只是只有做语音唤醒,我一开始也不知道是哪里的问题)的排除,发现是树莓派重启之后pulseau

    2022年10月16日
  • Java之Java开发工具

    Java之Java开发工具

  • 试题库管理系统–数据库设计[通俗易懂]

    试题库管理系统–数据库设计[通俗易懂]一、概要设计1.1背景和意义目前,许多高校绝大多数课程还采用考教统一的模式来完成教学过程,这种传统的考试模式在教学到实施考试的过程带有很大的主观随意性和不规范性。另外随着各高校近年来学生规模的扩大,教学任务日益繁重,教师的工作量相应的不断增加。迫切需要计算机辅助教学系统来打破这种传统的教学模式,减轻教师的工作负担,提高教学质量。因此,本文研究设计了一个试题库管理系统,来解决和缓解高校课程

  • vscode的使用

    vscode的使用一、基本使用1、生成Html模板先把右下角换成然后在空白页面 输入 ! 按下Tab即可。2、vscoe自动保存自动保存简直不要太爽 File–> Auto Save 即可。 可以在下面修改秒数保存。3、颜色主题以及字体或者直接快捷键 ctrl+k按完直接ctrl+t即可。上下选择合适主题。修改字体大小即可。4、修改删除快捷键…

  • python单例模式

    python单例模式

    2021年11月19日
  • Canny算子边缘检测原理及实现

    Canny算子边缘检测原理及实现写在前面Canny边缘检是在在1986年提出来的,到今天已经30多年过去了,但Canny算法仍然是图像边缘检测算法中最经典、先进的算法之一。相比Sobel、Prewitt等算子,Canny算法更为优异。Sobel、Prewitt等算子有如下缺点:没有充分利用边缘的梯度方向。 最后得到的二值图,只是简单地利用单阈值进行处理。而Canny算法基于这两点做了改进,提出了:基于边缘梯度…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号