fastRcNN算法路面病害检测_R语言经典算法

fastRcNN算法路面病害检测_R语言经典算法  FastR-CNN算法是作者RossGirshick继R-CNN后的又一力作。R-CNN虽然取得了不错的成绩,但是其缺点也很明显。FastR-CNN同样使用VGG-16网络结构,与R-CNN相比训练时间快9倍,测试时间快213倍,准确率从62%提升至66%(再Pascalvoc数据集上)。FastR-CNN主要是解决R-CNN存在的问题:测试训练速度慢,主要是提取候选区域的特征慢:R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

  Fast R-CNN算法是作者Ross Girshick对R-CNN算法的一种改进。R-CNN虽然取得了不错的成绩,但是其缺点也很明显。Fast R-CNN同样使用VGG-16网络结构,与R-CNN相比训练时间快9倍,测试时间快213倍,准确率从62%提升至66%(再Pascal voc数据集上)。Fast R-CNN主要是解决R-CNN存在的问题:

  • 测试训练速度慢,主要是提取候选区域的特征慢:R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征。由于候选区域有大量的重叠,这种提取特征的方法,就会重复的计算重叠区域的特征。在Fast-RCNN中,将整张图输入到CNN中提取特征,在邻接时再映射到每一个候选区域,这样只需要在末尾的少数层单独的处理每个候选框。
  • 训练需要额外的空间保存提取到的特征信息:R-CNN中需要将提取到的特征保存下来,用于为每个类训练单独的SVM分类器和边框回归器。在Fast R-CNN中,将类别判断和边框回归统一的使用CNN实现,不需要再额外的存储特征。

  Fast R-CNN算法步骤

  1. 输入一张图像生成1K~2K个候选区域(使用Selective Search方法);
  2. 将图像输入网络得到相应的特征图,将Selective Search算法生成的候选框投影到特征图上获得相应的特征矩阵;
  3. 将每个特征矩阵通过ROI pooling层缩放为7×7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果。

在这里插入图片描述
关于Fast R-CNN的几个点:

  1. 一次性计算整张图像特征:R-CNN依次将候选框区域输入卷积神经网络得到特征;Fast R-CNN将整张图像输入网络,紧接着从特征图像上提取相应的候选区域,这些候选区域的特征不需要再重复计算。
  2. ROI 池化层
  3. 分类器和边界框回归器
  4. Multi-task loss: L ( p , u , t u , v ) = L c l s ( p , u ) + λ [ u ⩾ 1 ] L l o c ( t u , v ) L(p, u, t^{u}, v)=L_{cls}(p, u)+ \lambda[u\geqslant 1]L_{loc}(t^{u}, v) L(p,u,tu,v)=Lcls(p,u)+λ[u1]Lloc(tu,v)

Fast R-CNN是对R-CNN的一种改进:

  1. 卷积不再是对每个候选区域进行,而是直接对整张图像进行,这样减少了很多重复计算;
  2. 用ROI pooling进行特征的尺寸变换,因为全连接层的输入要求尺寸大小一样,因此不能直接把候选区域作为输入;
  3. 将回归器放进网络一起训练,每个类别对应一个回归器,同时用softmax的全连接层代替原来的SVM分类器。

Fast R-CNN存在的问题:

  1. 依旧使用Selective Search算法提取候选区域,耗时较长;
  2. 无法满足实时应用,没有真正实现end-to-end训练测试;
  3. 利用了GPU,但是候选区域方法是在CPU上实现的。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/196164.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 集合类型python_集合 python

    集合类型python_集合 python集合集合的特点:是一种可迭代的、无序的、不能包含重复元素的数据结构去重b=[10,5,6,1,9,1]c=set(b)print(c)>>>{1,5

  • idea激活码2021.9-激活码分享

    (idea激活码2021.9)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html1STL5S9V8F-eyJsaWNlbnNlSWQi…

  • golang学习资料[Basic]

    golang学习资料[Basic]golang学习资料[Basic]

  • 关于MIPI协议(一)——物理层D-PHY总结

    关于MIPI协议(一)——物理层D-PHY总结关于移动端mipi协议的一些总结

  • thinkphp多用户在线客服系统源码-thinkPHP内核 附使用教程

    thinkphp多用户在线客服系统源码-thinkPHP内核 附使用教程步骤1请使用宝塔面板安装上传源码并且解压到网站很目录设置运行目录为public测试环境为php5.6mysql5.5伪静态选择为thinkphp宝塔安全放通:2080,9090这两个端口步骤2上方操作完毕后创建个数据库进行安装网站安装http://你的域名.com/install.php步骤3启动命令制定目录cd/www/wwwroot/你的网站目录/cgwl_pusher启动指令phpstart.phpstart-d如果没有运作起来根目录有个php5.6.

  • 归并排序 详解「建议收藏」

    归并排序 详解「建议收藏」注:内容,图片来自于慕课网liuyubobobo老师的课程。算法复杂度:O(nlogn);也许有很多同学说,原来也学过很多O(n^2)或者O(n^3)的排序算法,有的可能优化一下能到O(n)的时间复杂度,但是在计算机中都是很快的执行完了,没有看出来算法优化的步骤,那么我想说有可能是你当时使用的测试用例太小了,我们可以简单的做一下比较:当数据量很大的时候nlogn的优势将会比…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号