ddr2 odt_ddr2电压

ddr2 odt_ddr2电压经常有人会说支持DDR2的主板存在偷工减料的现象。事实上这是由于DDR2内存中使用了一项新的ODT技术,它可以在提高内存信号稳定性的基础上节省不少电器元件。主板终结是一种最为常见的终结主板内干扰信号的方法。在每一条信号传输路径的末端,都会安置一个终结电阻,它具备一定的阻值可以吸收反射回来的电子。但是目前DDR2内存的工作频率太高了,这种主板终结的方法并不能有效的阻止干扰信号。若硬要采用主板终结

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

经常有人会说支持DDR2的主板存在偷工减料的现象。事实上这是由于DDR2内存中使用了一项新的ODT技术,它可以在提高内存信号稳定性的基础上 节省不少电器元件。主板终结是一种最为常见的终结主板内干扰信号的方法。在每一条信号传输路径的末端,都会安置一个终结电阻,它具备一定的阻值可以吸收反 射回来的电子。但是目前DDR2内存的工作频率太高了,这种主板终结的方法并不能有效的阻止干扰信号。若硬要采用主板终结的方法得到纯净的DDR2时钟信 号会花费巨额的制造成本。

ODT是On-Die Termination的缩写,其意思为内部核心终结。从DDR2内存开始内部集成了终结电阻器,主板上的终结电路被移植到了内存芯片中。在内存芯片工作 时系统会把终结电阻器屏蔽,而对于暂时不工作的内存芯片则打开终结电阻器以减少信号的反射。由此DDR2内存控制器可以通过ODT同时管理所有内存引脚的 信号终结。并且阻抗值也可以有多种选择。如0Ω、50Ω、75Ω、150Ω等等。并且内存控制器可以根据系统内干扰信号的强度自动调整阻值的大小。

其实ODT技术的具体内部构造并不十分复杂。在内存各种引脚与内存模组的内部缓冲器中间设有一个EMRS扩展模式寄存器,通过其内部的一个控制引脚 可以控制ODT的阻抗值。系统可以使用2bit地址来定义ODT的四种工作状态。(0Ω、50Ω、75Ω、150Ω)一旦ODT接到一个设置指令,它就会 一直保持这个阻值状态。直到接到另一个设置指令才会转换到另一种阻值状态。

当向内存写入数据时,如果只有一条内存,那么这条内存就自己进行信号的终结,终结电阻等效为150Ω。如果为两条内存,那么他们会交错的进行信号的 终结。第一个模组工作时,第二个模组进行终结操作,等第二个模组工作时,第一个模组进行终结操作,但等效电阻为75Ω。当有三条内存的时候,三条会交替进 行信号终结,但等效电阻为50Ω。

整个ODT的设置和控制都要通过EMRS中那个控制引脚来完成。因此这个引脚的响应速度成为了ODT技术中的关键因素。ODT工作时有两种基本模 式:断电模式和其他模式。其中其他模式还包括激活模式和备用模式。ODT从工作到关闭所用的时差叫做tAONPD延迟,最少仅2个时钟周期就可以完成,最 多5个时钟周期。ODT从关闭到工作所用的时差叫做tAOFPD延迟,最少仅2个时钟周期完成,最大需要五个时钟周期。由于开启和休眠的切换如此迅速,内 存可以在不影响性能的前提下充分的进行“休息”。

ODT技术的优势非常明显。第一,去掉了主板上的终结电阻器等电器元件,这样会大大降低主板的制造成本,并且也使主板的设计更加简洁。第二,由于它 可以迅速的开启和关闭空闲的内存芯片,在很大程度上减少了内存闲置时的功率消耗。第三,芯片内部终结也要比主板终结更及时有效,从而减少了内存的延迟等待 时间。这也使得进一步提高DDR2内存的工作频率成为可能。

什么是位?

我们所说的位就是位元(数据位,bit), 位是内存的最小单位。一条可以应用于PC的内存条最低要由64个或128个数据位构成。

    标准的OK IC颗粒可以分为4位、8位或者16位,也就是说64个数据位的内存条如果用8位的颗粒来做,则需要8颗。如果用16位的来做,只需要4颗。

什么是补位?

以一个颗粒是8位的内存来说,单个颗粒的位是8位。但由于某些颗粒不良,内部坏了4个位,但是另外4个位还可以利用。如果用这种颗粒做一条64位的 内存,那么正常的8颗IC是不够的,必需是16颗才够。其原理是用正面IC的4个好位去与反面的IC的4个好位,互相补成8个位。再用特殊的底板将好的位 共在一起用,这就叫补位。这种IC也叫降级IC。用补位的方式产生的内存也可以称为补位内存条。

普通内存颗粒有几个位?

标准的OK IC颗粒可以分为4位、8位或者16位,也就是说64个数据位的内存条如果用8位的颗粒来做,则需要8颗。如果用16位的来做,只需要4颗。

何为“专用内存”?除了一些经常逛IT市场、喜欢网上购物的朋友略知一二外,更多的消费者对“专用内存”一说可能是不知所云。即使是接触过这种内存 的朋友,也仅仅知道这种内存只能在SiS或者VIA芯片组的主板上使用,且售价比同类内存便宜数十元。这种“专用内存”也可以和普通内存混插使用,但综合 性能要受到一定影响。其实,所谓的“专用内存”其实都是实实在在的次品—补位内存。补位内存中最常见的是使用Micron(美光)颗粒,但表面已经过打 磨,变为另一品牌。

 “专用内存”目前至少有三种PCB板,每一种PCB板与正常的产品都不相同。量身定制PCB当然是带有一定的目的,其初衷是为了方便补位和在 VIA专用与SiS专用间切换。也就是说,制造商可以先把内存颗粒、SPD芯片等排布于PCB板之上,最终仅需要调整电阻在PCB板上的位置,就能够让它 们成为VIA或者SiS专用产品。也就是说,如果你具有基础的焊接技术,那就可以自己动手将相关的电阻移位,让“专用内存”也可以“一心两用”。事实上并 不是所有的“专用内存”都可以在VIA专用与SiS专用间自由转换。PCB最初的设计在此起到了决定性作用。

  “专用内存”既有着惊人的低价格,也有着烦人的兼容性。为了避免这种情况,消费者在购买产品时一定要认真检查产品的细节部位。另外,到当地的大代理商购买产品也是比较稳妥的途径,而对一些小档口小店则要提起十二分的注意。

显存频率和内存速度之间的关系是什么呢?

显存频率是指默认情况下,该显存在显卡上工作时的频率,以MHz(兆赫兹)为单位。显存频率一定程度上反应着该显存的速度。显存频率随着显存的类 型、性能的不同而不同,SDRAM显存一般都工作在较低的频率上,一般就是133MHz和166MHz,此种频率早已无法满足现在显卡的需求。DDR SDRAM显存则能提供较高的显存频率,主要在中低端显卡上使用,DDR2显存由于成本高并且性能一般,因此使用量不大。DDR3显存是目前高端显卡采用 最为广泛的显存类型。不同显存能提供的显存频率也差异很大,主要有400MHz、500MHz、600MHz、650MHz等,高端产品中还有 800MHz、1200MHz、1600MHz,甚至更高。

  显存频率与显存时钟周期是相关的,二者成倒数关系,也就是显存频率=1/显存时钟周期。如果是SDRAM显存,其时钟周期为6ns,那么它的显 存频率就为1/6ns=166 MHz。而对于DDR SDRAM或者DDR2、DDR3,其时钟周期为6ns,那么它的显存频率就为1/6ns=166 MHz,但要了解的是这是DDR SDRAM的实际频率,而不是我们平时所说的DDR显存频率。因为DDR在时钟上升期和下降期都进行数据传输,其一个周期传输两次数据,相当于SDRAM 频率的二倍。习惯上称呼的DDR频率是其等效频率,是在其实际工作频率上乘以2,就得到了等效频率。因此6ns的DDR显存,其显存频率为 1/6ns*2=333 MHz。具体情况可以看下边关于各种显存的介绍。

  但要明白的是显卡制造时,厂商设定了显存实际工作频率,而实际工作频率不一定等于显存最大频率。此类情况现在较为常见,如显存最大能工作在 650 MHz,而制造时显卡工作频率被设定为550 MHz,此时显存就存在一定的超频空间。这也就是目前厂商惯用的方法,显卡以超频为卖点。此外,用于显卡的显存,虽然和主板用的内存同样叫DDR、 DDR2甚至DDR3,但是由于规范参数差异较大,不能通用,因此也可以称显存为GDDR、GDDR2、GDDR3

我们都知道,在PC应用领域,图形处理、游戏和文字处理是最主要的任务。显然,游戏和图形处理是对内存要求较高的任务,但即使在这两方面,也不能一 概而论地说就要高性能的内存。因为游戏中也分即时战略和动作射击(很多3D化的RPG现在也可归入此类了)两大类,不同的游戏对系统的要求是不一样的,当 然装机配内存的时候就不能一刀切了。

  3D动作类游戏

  3D动作类最典型的代表是CS与极品飞车等游戏,这些游戏除了对显卡要求高外,对内存的带宽和瞬间的数据吞吐能力要求也是很高的。因为多数人用 的显卡都是64MB显存或以下的,AGP显卡借用系统内存是不可避免的;即使是具有128MB显存的显卡,也不可能完全包办大型3D游戏产生的数据需求。 越复杂越绚丽的场景,对内存的要求就越高。例如CS里的烟雾dan投掷后、水里行进的光线折射,飞车里的车面质感、尾气烟尘的效果等等,都需要在瞬间传送 大量的数据,渲染多个三角形,所以对速度是很敏感的。如果内存提供的带宽不够高,在一些如多人混战、多辆车子抢道、撞车等场景,就可能出现暂时的停滞感, 玩起来当然很不爽了。不过,这类游戏总体上的数据量却不算很多——因为激烈对抗的场景不是时时都有,有时游戏中的单位死亡了,停止活动了,数据传输量也会 减少——这种游戏,应该搭配性能指标高的内存。256MB的DDR266/333往往会比512MB的SDRAM效果好。

  即时战略类游戏

  魔兽3是最近最火爆的游戏之一,这是一个3D化的即时战略游戏。尽管采用了3D的界面,这个游戏需要渲染的三角形却不算多,一块32MB的显卡 基本上就可胜任了(当然如果把游戏调为高分辨率、高色深的话还是需要64MB的显存才能跑得顺)。这个游戏对内存的胃口在于容量而不是带宽指标,因为这个 游戏的单位是死亡后马上又产生新的单位补充,除非玩家游戏资金耗尽被消灭,否则单位只会越来越多。到后期大家基本上都是满员的90人口,每个单位都要占用 一定量的内存,4家以上对战的话,系统的负荷是相当大的,容量少于256MB的时候,可以明显感觉到游戏的停滞。尤其是多个单位施放魔法的时候,光影效果 更复杂,低容量内存配置的系统,基本就没法玩了。例如有人装的是高端Pentium 4+128MB RDRAM机型,玩魔兽3将是很痛苦的。一般来说,这种游戏至少要256MB内存才会流畅,512MB的SDRAM,在这里会比256MB的DDR或 RDRAM显出优势来。

  总的来说,内存大的时候,读取和存档速度会快点;游戏的峰值数据传输,就要靠内存的最高带宽了。因此容量与性能的均衡,还要看你的具体要求和内存的合理搭配了。

目前DDR2尚未完全取代DDR内存,在目前的整机环境下,DDR2基本能够满足各类型计算机的应用需求,那么最新一代的DDR3相比DDR2具有 哪些优势,使得包括Intel和AMD以及A-DATA在内的众多国际顶级厂商都致力于DDR3的开发与应用呢?最主要的原因是,由于DDR2的数据传输 频率发展到800MHz时,其内核工作频率已经达到了200MHz,因此,再向上提升较为困难,这就需要釆用新的技术来保证速度的可持续发展性。另外,也 是由于速度提高的缘故,内存的地址/命令与控制总线需要 有全新的拓朴结构,而且业界也要求内存要具有更低的能耗。

DDR2内存能够取代DDR内存,不仅是因为带宽上的优势,还有非常重要的一条,那就是DDR2在节能上比DDR更有优势。同样的,DDR3的低功 耗特性对于移动设备来说意义重大,功耗降低可以显著延长设备电池的续航能力。英特尔在(今年)春季的IDF峰会上就对分别搭载DDR2与DDR3的移动机 型做了对比,在高清视频播放模式下,DDR3机型的电池时间可比同配置DDR2机型高出20~30分钟,节能效果十分显著。

DDR3的低功耗主要得益于较低的核心电压,第一代DDR内存的核心电压达到2.5V,DDR2降低到1.8V,而DDR3则进一步降低到 1.5V;此外,I/O Buffer也采用低功耗设计,I/O Driver的阻值从DDR2的34欧姆降低到18欧姆,这也可以带来明显的功耗降低——整体而言,DDR3内存拥有更为出色的带宽功耗比 (Bandwitdh per watt,每瓦能耗的带宽指标),假设DDR2 800的功耗/带宽比为参照点1,那么DDR3 800的比值就只有0.72,相当于在相同带宽前提下,DDR3 800的功耗和DDR2 800相比有28%的降幅;即便是更高性能的DDR3 1066、它的比值也只提升到0.83,功耗降幅也达到17%。因此,从DDR2升级到DDR3,内存系统的功耗将明显降低,移动设备也可因此获得更长的 电池续航力。

Intel最新的965芯片组家族只支持DDR2,并放弃了对DDR的支持。AMD方面则要积极得多, AMD计划在下一代的K8L架构CPU中全面导入对DDR3内存的支持。在AMD的路线图看,K8L CPU将支持同时DDR2和DDR3内存,但很显然,DDR2内存不是AMD最好的选择,高频率、低时序的DDR3内存必然会是AMD积极开拓的对象。

从规格来看,DDR3仍将沿用FBGA封装方式,故在生产上与DDR2内存区别不大。但是由设计的角度上来看,因DDR3的起跳工作频率在 1066MHz,这在电路布局上将是一大挑战,特别是电磁干扰,因此也将反映到PCB上增加模块的成本。预计在DDR3进入市场初期,其价格将是一大阻 碍,而随着逐步的普及,产量的提升才能进一步降低成本。

DDR3内存的新增功能,DDR3内存还有部分DDR2内存所不具备的功能,正是这些,让DDR3内存的表现有了根本性的提高

  重置(Reset)

  重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界已经很早以前就要求增这一功能,如今终于在DDR3身上实现。这一 引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有的操作,并切换至最少量活动的状态,以节约电力。在Reset期 间,DDR3内存将关闭内在的大部分功能,所以有数据接收与发送器都将关闭。所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而 且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

  ZQ校准

  ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(ODCE,On-Die Calibration Engine)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令之后,将用相应的时钟周期(在加电与初始化之后用512个时钟 周期,在退出自刷新操作后用256时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

  参考电压分成两个

  对于内存系统工作非常重要的参考电压信号VREF,在DDR3系统中将分为两个信号。一个是为命令与地址信号服务的VREFCA,另一为数据总线服务的VREFDQ,它将有效的提高系统数据总线的信噪等级。

  根据温度自动自刷新(SRT,Self-Refresh Temperature)

  为了保证所保存的数据不丢失,DRAM必须定时进行刷新,DDR3也不例外。不过,为了最大的节省电力,DDR3采用了一种新型的自动自刷新设 计(ASR,Automatic Self-Refresh)。当开始ASR之后,将通过一个内置于DRAM芯片的温度传感器来控制刷新的频率,因为刷新频率高的话,消电就大,温度也随之 升高。而温度传感器则在保证数据不丢失的情况下,尽量减少刷新频率,降低工作温度。不过DDR3的ASR是可选设计,并不见得市场上的DDR3内存都支持 这一功能,因此还有一个附加的功能就是自刷新温度范围(SRT,Self-Refresh Temperature)。通过模式寄存器,可以选择两个温度范围,一个是普通的的温度范围(例如0℃至85℃),另一个是扩展温度范围,比如最高到 95℃。对于DRAM内部设定的这两种温度范围,DRAM将以恒定的频率和电流进行刷新操作。

  局部自刷新(RASR,Partial Array Self-Refresh)

  这是DDR3的一个可选项,通过这一功能,DDR3内存芯片可以只刷新部分逻辑Bank,而不是全部刷新,从而最大限度的减少因自刷新产生的电力消耗。这一点与移动型内存(Mobile DRAM)的设计很相似。

  点对点连接(P2P,Point-to-Point)

  这是为了提高系统性能而进行了重要改动,也是与DDR2系统的一个关键区别。在DDR3系统中,一个内存控制器将只与一个内存通道打交道,而且 这个内存通道只能一个插槽。因此内存控制器与DDR3内存模组之间是点对点(P2P,Point-to-Point)的关系(单物理Bank的模组),或 者是点对双点(P22P,Point-to-two-Point)的关系(双物理Bank的模组),从而大大减轻了地址/命令/控制与数据总线的负载。而 在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务 器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。不过目前有关DDR3内存模组的标准制定工作刚开始,引脚设计还没有最 终确定。此外,DDR3还在功耗管理,多用途寄存器方面有不少新的设计。

BGA封装

BGA技术(Ball Grid Array Package)即球栅阵列封装技术。BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但 引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以 前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

BGA封装技术可详分为五大类:

    1.PBGA(Plasric BGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。

    2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。

    3.FCBGA(FilpChipBGA)基板:硬质多层基板。

    4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板。

5.CDPBGA(Carity Down PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。

BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。

3.信号传输延迟小,适应频率大大提高。

4.组装可用共面焊接,可靠性大大提高。

CSP封装

CSP(Chip Scale Package),是芯片级封装的意思。CSP封装最新一代的内存芯片封装技术,其技术性能又有了新的提升。CSP封装可以让芯片面积与封装面积之比超过 1:1.14,已经相当接近1:1的理想情况,绝对尺寸也仅有32平方毫米,约为普通的BGA的1/3,仅仅相当于TSOP内存芯片面积的1/6。与 BGA封装相比,同等空间下CSP封装可以将存储容量提高三倍。0.2毫米,大大提高了内存芯片在长时间运行后的可靠性,线路阻抗显著减小,芯片速度也随 之得到大幅度提高。

CSP封装内存芯片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升,这也使得CSP的存取时 间比BGA改善15%-20%。在CSP的封装方式中,内存颗粒是通过一个个锡球焊接在PCB板上,由于焊点和PCB板的接触面积较大,所以内存芯片在运 行中所产生的热量可以很容易地传导到PCB板上并散发出去。CSP封装可以从背面散热,且热效率良好,CSP的热阻为35℃/W,而TSOP热阻40℃ /W。CSP封装又可分为四类:

1.Lead Frame Type(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。

2.Rigid Interposer Type(硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。

3.Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。

4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:

1.满足了芯片I/O引脚不断增加的需要。

2.芯片面积与封装面积之间的比值很小。

3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。

内存与主板不兼容的故障较为常见,表现为昨天电脑还用的好好的,可是今天早晨一开机,即“嘀嘀”地叫个不停。只有打开机箱,把内存条取下来重新插一 下就好了。注意:在拔插内存条时一定要拔掉主机和电源线,防止意外烧毁内存。这是故障轻的,严重的话,需要把几个内存插槽都擦拭好几遍,才能把机子点亮。 可是用不了十天半个月,就又会再出现报警的情况。只要你打开机箱把内存插一下就又好了。你说机器有问题,只要点亮了,就是连续运行十天半个月的一点问题也 没有。可老是报警这谁也受不了。这种情况就是典型的内存与主板不兼容。

 

  造成这种故障的原因有:

 

⑴ 内存条不规范,内存条有点薄。当内存插入内存插槽时,留有一定的缝隙。如果在使用过程中有振动或灰尘落入,就会造成内存接触不良,产生报警。

 

⑵ 内存条的金手指工艺差,金手指的表面镀金不良。在长时间的使用过程中,金手指表面的氧化层逐渐增厚,积累到一定程度后,就会致使内存接触不良,开机时内存报警。

 

⑶ 内存插槽质量低劣,簧片与内存条的金手指接触不实在,在使用过程中始终存在着隐患,在一定的时间就会点不亮,开机报警。

 

⑷ 再就是纯粹的不兼容情况:一款条子,在有的主板上用得好好的,但是到了这块主板上却经常死机,或者不能正常启动。这就是典型的不兼容情况。

 

  处理方案:

 

⑴ 用橡皮仔细地把内存条的金手指擦干净,重新插入插槽。

 

⑵ 用热熔胶把内存插槽两边的缝隙填平,防止在使用过程中继续氧化。

 

⑶ 如果使用一段时间以后,还出现报警,这时可先更换一下内存条,看在以后的使用过程中是否还出现报警。

 

⑷ 如果过一段时间以后还有内存报警出现,这时只有更换主板,才能彻底解决问题。

 

  对于内存条与主板因为技术问题不兼容的情况,只能更换其他品牌的内存条,当然也可以换主板。

一、用万用表测量内存芯片的方法

在主板与内存的数据引脚是64个,D0-D63,为了保护内存的数据位脚,在D0-D63这64个数据位脚都加有一个阻值不大的电阻(10欧)起限 流作用。而测试仪主要的原理是用程序重复测试内存芯片的每个数据位引脚,看有没有击穿或短路的数据位引脚,还有就是芯片的时钟引脚、地址引脚。所以用万用 表测试芯片时也可用测试仪的方法来测,只要红笔对地(1脚),黑笔测量排阴阻的阻值,就是内存芯片数据位的阻值来判断是哪个芯片坏了,正常的话每个数据位 阻值相同。但还是没有测试仪那么直观,用这种方法可测量DDR内存芯片的好坏。

二、 用测试仪测量内存芯片方法

根据使用说明书,测量的内存在2A、2B这里,指单组和双组的意思。但16位的芯片有8个,也相当于是两组,8位的芯片有16个也相当于两组。2A 为第二组,2B为第一组。测量时会循环测试每一组中的每一个芯片的数据位脚。一般测了3次—5次没坏就是好的。好的芯片为:PASS。坏的芯片就显示出坏 的数据位引脚。

1、 开机跳不进测试,一般有:芯片短路、PCB板短路。解决方法为把芯片拆下来换到好的PCB板上试芯片好坏,看是什么问题。

2、 内存测试仪不测试SPD芯片,SPD芯片可有可无

3、 金手指烧了的话也不能测试,必须把芯片拆下换到好的PCB板上试芯片好坏

有关内存延时:

CAS延时,有时也称为CL或CAS,是RAM必须等待直到它可以再次读取或写入的最小时钟数。很明显,这个数字越低越好。 

  tRCD是内存中特殊行上的数据被读取/写入之前的延迟。这个数字也是越低越好。 

  tRP主要是行预充电的时间。tRP是系统在向一行写入数据之后,在另一行被激活之前的等待时间。越低越好。 

  tRAS是行被激活的最小时间。所以基本上tRAS是指行多少时间之内必须被开启。这个数字随着RAM设置,变化相当多。 

  有关内存等级:

  等级直接是指能得到的最大带宽,而间接指内存时钟速度。例如,PC2100拥有2.1GB/S的最大传输速度,和133MH z的时钟速度。作为另一个例子的PC4000,具有4GB/S的理想传输速度和250MHz的时钟。要从PCXXXX等级中获得 时钟速度,把等级除以16就行了。把速度等级乘上16就得到了带宽等级。  

  有关内存时钟速度:

  DDR XXX正好是实际时钟速度的两倍;也就是说,DDR 400是设定在200MHz下的。 

如果想要知道DDR XXX速度的PC-XXXX速度,把它乘上8就行了。

根据厂商生产的定义分类。希望对选购有帮助。谨供参考:

一、         普通型:

符合标称、多为散装货(并不是没有包装)、一般为低端型号(使用原料相对成本低廉)

二、         类超频型:

使用了体质较好的颗粒(也有的是挑选过的)、加少许电压能稳定工作在一定的频率上(一般情况不会烧毁)、生产和包装推广上增加了成本。

三、         游戏型:

颗粒能在一些苛刻的条件下稳定工作的、控制芯片(清空和进驻的时间减少)、 成本增加(一定会提高)

例如:

金士顿的分类:KTC系统指定内存   HyperX玩家内存       KVR通用内存

芝奇的分级是这样的,首先分等,依次是G]H]P]N,每一等再分为五个级别 Z]A]K]Q]J。 PK就表示是P级K等的内存,属于中端,HZ则属于较高端。

威刚的分类:红色威龙系列是高端,易超频,带散热片,外观漂亮。万紫千红系列是低端,但是兼容性好,便宜,性价比高。

众所周知,追求最大利润是广大JS的宗旨。伴随着近期猛烈的降价风潮,成本压力下的二三线厂商和杂牌寨厂,为谋利润不得不放弃品质,致使劣质闪存盘和内存条屡屡浮出水面,并有愈演愈烈之势,这使得广大用户叫苦不迭。

首先先来看看什么是品质不好的内存条与闪存卡, 主要分为两种,一种是由于生产厂商的生产水平有限,不能使芯片质量到达高要求、严规格,在产品用料、设计等方面存在一定问题,当然这种芯片在价格方面也会 相对较低,所以这是两方面原因组成的,如果造成电脑在使用中的问题,也是双方面的。那么第二种情况就要严重得多,假货、水货、以次充好的芯片不但使消费者 在经济上受到损失,同时这种品质的内存与闪存也容易对其它硬件造成不同程度的影响,而且在使用中存在的问题是最致命的,尤其劣质的内存与闪存会使保贵的数 据丢失,造成巨大的损失。所以我们不能因为图便宜而购买使用劣质内存与闪存产品。

在这个鱼目混杂的IT产品中,消费者如何确保能购到一枚真正优质、划算的内存与闪产品呢?其实很简单,无论是内存还是闪存产品,我们都可以采用一看品牌、二看品质、三看服务的方法进行选择。

  所谓一看品牌,指的是尽量购买一线品牌的产品,内存条如威刚、金士顿等国际大厂的产品。闪存产品如朗科、SanDisk等品牌。这样的品牌一般综合素质过硬,可以确保消费者无忧购买。而相应的,一些二三线品牌、杂牌,消费者在不是很了解的情况下尽量不要选购。

  所谓二看品质,指的是在购买时可以适当的了解下产品的功能素质。如包装上有无“超稳定”标识,闪存盘使用注重数据稳定安全,如无“超稳定”标识 则易藏隐患。再比如现场检测一下容量,以免误购缩水闪存盘。内存条则要看PCB板做工是否精细,IC颗粒是否被打磨,标称速度是否达标等指标。

  所谓三看服务,指的是看清产品是否有三包服务、维修网点是否充足。一个完善的售后服务,一般会保证包修包换、全国联保。需要注意的是,有些杂牌厂商的维修网点都是虚构的,消费者甚至可以现场打电话查证。

总而言之,现在的市场价格相差悬殊,一些杂牌、二线品牌的价格诱惑也相当大,消费者对此必须保持理性,如果你在对内存、闪存产品不了解的情况下,应尽量选购名牌,虽然名牌产品价格高些,但是物有所值,用起来也放心、安心。

Automatic Configuration“自动设置”(可能的选项:On/ Off或Enable/Disable)

可能出现的其他描述为:DRAM Auto、Timing Selectable、Timing Configuring By SPD等,如果你要手动调整你的内存时序,你应该关闭它,之后会自动出现详细的时序参数列表。

Bank Interleaving(可能的选项:Off/Auto/2/4)

这里的Bank是指L-Bank,目前的DDR RAM的内存芯片都是由4个L-Bank所组成,为了最大限度减少寻址冲突,提高效率,建议设为4(Auto也可以,它是根据SPD中的L-Bank信息来自动设置的)。

Burst Length“突发长度”(可能的选项:4/8)

一般而言,如果是AMD Athlon XP或Pentium4单通道平台,建议设为8,如果是Pentium4或AMD 64的双通道平台,建议设为4。但具体的情况要视具体的应用而定。

CAS Latency “列地址选通脉冲潜伏期”(可能的选项:1.5/2/2.5/3)

BIOS中可能的其他描述为:tCL、CAS Latency Time、CAS Timing Delay。

Command Rate“首命令延迟”(可能的选项:1/2)

这个选项目前已经非常少见,一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选 择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。显然,也是越短越好。但当随 着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调 长。目前的大部分主板都会自动设置这个参数,而从上文的ScienceMark 2.0测试中,大家也能察觉到容量与延迟之间的关系。

RAS Precharge Time “行预充电时间”(可能的选项:2/3/4)

    BIOS中的可能其他描述:tRP、RAS Precharge、Precharge to active。

RAS-to-CAS Delay“行寻址至列寻址延迟时间”(可能的选项:2/3/4/5)

    BIOS中的可能其他描述: tRCD、RAS to CAS Delay、Active to CMD等。

Active to Precharge Delay“行有效至行预充电时间”(可能的选项:1……5/6/7……15)

    BIOS中的可能其他描述:tRAS、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay等。这个参数要根据实际情况而定,具体设置思路见上文,并不是说越大或越小就越好。

内存,PC数据存储交换的关键所在,动品质一发而动全PC系统,要想鉴别真正的高品质内存,要尽量往小处看,往细微之处深究。在市面上的内存条品种 不少,但真正考量,内存其实并不一般。内存颗粒的优劣和内存基板层数是决定内存质量的重要因素,但品牌因素也不可忽视。大牌厂商生产的品牌内存一般比同级 非品牌内存质量高,即便是所用的DRAM芯片相同,内存基板相同,甚至外观也一模一样。

1.PCB层数

DIMM内存一般有4层印制基板(PCB)和6层印制基板之分。一般来说,6层的比4层的抗干扰性强,当然内存的品质还与所用的内存颗粒等因素有关。要区分内存用的是4层基板还是6层基板,单从外表来看是很困难的。一般说来,4层基板比6层基板薄。

2.基板信号线

我们还可以从基板表面信号线的多少来判断。将内存基板有SPD芯片的一面朝上,观察内存颗粒间的信号线。信号线比较多的是4层基板,反之信号线少的则是6层基板。这是因为在采用6层基板的内存条上,许多信号线都位于内部的布线层上,而不需要在表面层引出。 

3.SPD信息

SPD是英文Serial Presence Detect的缩写。它指的是内存条上一个较小的EEPROM器件以及它里边记录的数据。SPD里面的数据有128Byte,包括容量、组成结构、性能参 数以及厂家信息等。开机自检时BIOS要参考SPD信息对内存进行初始化。很多非品牌内存中SPD内容很简单甚至很多信息均为空白,可见由SPD的设置情 况也能判断内存的质量。  

4.金手指工艺

金手指实际是在一层铜皮(也叫覆铜板)上通过特殊工艺再覆上一层金,因为金不易被氧化,超强的导通性。内存处理单元的所有数据流、电子流正是通过金 手指与内存插槽的接触与PC系统进行交换,是内存的输出输入端口,因此其工艺则显得相当重要,同时要耗费一定量的贵重金属——黄金,是内存成本的敏感部 分。

金手指的金层大致有两种工艺标准:化学沉金和电镀金。在目前市面销售的绝大多数内存的金手指金层都是采取化学沉金,化学沉金的金层的厚度一般在 3-5微米,很薄,很多优质内存的可能达到6微米,但因工艺限制,最后金层也不会超过10微米。这层薄金在安装过程与插槽很容易因磨擦而脱落,受损后的金 层裸露在空气中,日积月累,特别是电流和高温的作用下,很容易在空气中被氧化,氧化层形成并不断扩展,而氧化物的导电性很差,从而造成数据流、电子流的不 正常传输,自然系统的稳定性降低。另一种成金方式,是电镀金。电镀金是在含金电解液中的正极凝集,只要保证正负极存在,金的积淀就会持续下去,原理上金层 厚度可以无限。金层厚度增加,在使用中能有效抗摩擦破损,防止氧化层产生,保证金手指与接触部位的良好导通性,因此这项奢侈工艺对系统稳定性非常有益。

5.PCB板工艺

DRAM和很多辅助元件、集成电路都在小小的一块PCB板上,PCB的质量优劣对整块内存的影响可见一斑。那么决定PCB质量优劣的因素主要有哪些 呢?铜皮层数(也即PCB板层数)、铜皮质量是关键。铜皮层数(也即PCB板层数)越多,电子线路的布线空间会更大,密密麻麻的线路将能得到最优化的布 局,这就能有效的减少电磁干扰和不稳定因素。在运行过程中,伴随内存高速的数据交换存在强大的电子流,形成电子噪音,如果层数的增多,相应电磁屏蔽的效果 就会更明显,这就进一步加强了稳定性。因此,6层PCB在其他方面都相同的前提下,肯定要比4层PCB稳定的多。

6.焊接工艺

焊接工艺在品质方面起到至关重要的作用。焊接工艺中,焊锡的质量是重要因素。锡熔点低、不易腐蚀,是优良的焊接剂。但是锡也分等级,高等级锡在纯 度、配比、锡球数量和大小以及相应的熔点温度上都表现不俗,值得一提的是锡球,锡在经过提纯后会经过特殊粉碎工艺将块状锡磨成极细小的锡球,再将锡球根据 需要熔铸成各种形状,例如焊条等。在回炉焊中,锡球越细就越容易吸收热量,融化的更透彻,自然焊接就越紧密,不会出现虚焊现象。众所周知,真正在焊接时采 用的并非纯锡,为了保障焊接速度和质量需添加助焊剂(一般为液态松香)和凝固力较好的铅等重金属,严格按照一定配比在双转向离心搅拌机中充分搅拌均匀,焊 接的每一个环节都细致入微,分分见真功,很多高品质内存都始终从点滴入手,做出精品的

存储器:用来存放计算机中的所有信息:包括程序、原始数据、运算的中间结果及最终结果等。

只读存储器(ROM):只读存储器在使用时,只能读出而不能写入,断电后ROM中的信息不会丢失。因此一般用来存放一些固定程序,如监控程序、子程序、字库及数据表等。ROM按存储信息的方法又可分为以下几种:

1、掩膜ROM:

掩膜ROM也称固定ROM,它是由厂家编好程序写入ROM(称固化)供用户使用,用户不能更改内部程序,其特点是价格便宜。

2、可编程的只读存储器(PROM):

它的内容可由用户根据自已所编程序一次性写入,一旦写入,只能读出,而不能再进行更改,这类存储器现在也称为OTP(Only Time Programmable)。

3、可改写的只读存储器EPROM:

前两种ROM只能进行一次性写入,因而用户较少使用,目前较为流行的ROM芯片为EPROM。因为它的内容可以通过紫外线照射而彻底擦除,擦除后又可重新写入新的程序。

4、可电改写只读存储器(EEPROM):

EEPROM可用电的方法写入和清除其内容,其编程电压和清除电压均与微机CPU的5V工作电压相同,不需另加电压。它既有与RAM一样读写操作简便,又有数据不会因掉电而丢失的优点,因而使用极为方便。现在这种存储器的使用最为广泛。

随机存储器(RAM):

这种存储器又叫读写存储器。它不仅能读取存放在存储单元中的数据,还能随时写入新的数据,写入后原来的数据就丢失了。断电后RAM中的信息全部丢失。因些,RAM常用于存放经常要改变的程序或中间计算结果等信息。

RAM按照存储信息的方式,又可分为静态和动态两种。

1、静态SRAM:其特点是只要有电源加于存储器,数据就能长期保存。

2、动态DRAM:写入的信息只能保存若干ms时间,因此,每隔一定时间必须重新写入一次,以保持原来的信息不变。

可现场改写的非易失性存储器:

这种存储器的特点是:从原理上看,它们属于ROM型存储器,从功能上看,它们又可以随时改写信息,作用又相当于RAM。所以,ROM、RAM的定义和划分已逐渐的失去意义。

1、快擦写存储器(FLASH)

这种存储器是在EPROM和EEPROM的制造基础上产生的一种非易失性存储器。其集成度高,制造成本低于DRAM,既具有SRAM读写的灵活性和较快的访问速度,又具有ROM在断电后可不丢失信息的特点,所以发展迅速。

2、铁电存储器FRAM

它是利用铁电材料极化方向来存储数据的。它的特点是集成度高,读写速度快,成本低,读写周期短。

存储器是计算机的重组成部份。存储器是由大量缓冲寄存器组成的,其用途是存放程序和数据,使计算机具有记忆功能。这些程序和数据在存储器中是以二进制代码表示的。根据计算机的命令,按照指定地址,可以把代码取出来或存入新代码。

U盘即USB盘的简称,而优盘只是U盘的谐音称呼。U盘是闪存的一种,因此也叫闪盘。最大的特点就是:小巧便与携带、存储容量大、价格便宜。是移动存储设备之一。一般的U盘容量有64M、128M、256M、512M、1G、2G、4G及以上等。

1. U盘一般都有写保护开关,但应该在U盘插入计算机接口之前切换,不要在U盘工作状态下进行切换。

  2. U盘都有工作状态指示灯,如果是一个指示灯,当插入主机接口时,灯亮表示接通电源,当灯闪烁时表示正在读写数据。如果是两个指示灯,一般两种颜色,一个在 接通电源时亮,一个在U盘进行读写数据时亮。有些U盘在系统拷贝进度条消失后仍然在工作状态,严禁在读写状态灯亮时拔下U盘。一定等读写状态指示灯停止闪 烁或灭了才能拔下U盘。

  3.有些品牌型号的U盘为文件分配表预留的空间较小,在拷贝大量单个小文件时容易报错,这时可以停止拷贝,采取先把多个小文件压缩成一个大文件的方法解决。

  4.为了保护主板以及U盘的USB接口,预防变形减少摩擦,尽量使用USB延长线,一般都随U盘赠送。如果需要买,尽量选择知名品牌,线越粗越好。但不能超过3米,否则容易在拷贝数据时出错。

  5. U盘的存储原理和硬盘有很大出入,不用整理碎片,否则影响使用寿命。

U盘故障解决办法

以下故障在维修时,首先要排除USB接口损坏及PCB板虚焊、及USB延长线正常的情况下,再维修判断。

1、U盘插到机器上没有任何反应

  维修思路:根据故障现象判断,U盘整机没有工作,而U盘工具所要具备的条件也就是我们维修的重点。无论任何方案的U盘想要工作都必须具备以下几个条件:

  (1)供电,分为主控所需的供电和FLASH所需的供电,这两个是关键,而U盘电路非常的简单,如没有供电一般都是保险电感损坏或3。3V稳压 块损坏,说到稳压块再这里也说一下,其有三个引脚分别是电源输入(5V)、地、电源输出(3.3),工作原理就是当输入脚输入一个5V电压时,输出脚就会 输出一个稳定的 3.3V。只要查到哪里是没有供电的根源,问题就会很好解决了。

  (2)时钟,因主控要在一定频率下才能工作,跟FLASH通信也要*时钟信号进行传输,所以如果时钟信号没有,主控一定不会工作的。而在检查这 方面电路的时候,其实时钟产生电路很简单,只需要检查晶振及其外围电路即可,因晶振怕刷而U盘小巧很容易掉在地上造成晶振损坏,只要更换相同的晶振即可。 注意:晶振是无法测量的,判断其好坏最好的方法就是代换一个好的晶振来判断。

  (3)主控,如果上述两个条件都正常那就是主控芯片损坏了。只要更换主控了。

2、U盘插入电脑,提示“无法识别的设备”。 

  维修思路:对于此现象,首先的一点说明U盘的电路基本正常,而只是跟电脑通信方面有故障,而对于通信方面有以下几点要检查:

  (1)U盘接口电路,此电路没有什么特别元件就是两根数据线D+ D-,所以在检查此电路时只要测量数据线到主控之间的线路是否正常即可,一般都在数据线与主控电路之间会串接两个小阻值的电阻,以起到保护的作用,所以要检查这两个电阻的阻值是否正常。

  (2)时钟电路,因U盘与电脑进行通信要在一定的频率下进行,如果U盘的工作频率和电脑不能同步,那么系统就会认为这是一个“无法识别的设备”了。这时就要换晶振了。而实际维修中真的有很多晶振损坏的实例!

  (3)主控,如果上述两点检查都正常,那就可以判断主控损坏了。

3、可以认U盘,但打开时提示“磁盘还没有格式化”但系统又无法格式化,或提示“请插入磁盘”,打开U盘里面都是乱码、容量与本身不相符等。

  维修思路:对于此现象,可以判断U盘本身硬件没有太大问题,只是软件问题而以了。

  解决方法:找到主控方案的修复工具搞一下就可以了。这个就要大家自己看U盘的主控是什么方案的来决定了。

  U盘故障对于无法写文件、不存储等现象,一般都是FLASH性能不良或有坏块而引起的。U盘不同于MP3,不存在固件之说,但有些厂家把自己的软件放到里面,低格一下就会没有的。

  告诉大家一个非常简单的方法,就是在碰到主控损坏或找不到相应的修复工具时,可以用U盘套件来重新搞一个新的U盘,方法就是把故障机的 FLASH拆下来,放到新的PCB板上就可以了。U盘套件包括(PCB带主控(1.1/2.0)及外壳一套),维修起来非常简单,做数据恢复就更方便了。

U盘的寿命

  U盘的可擦写次数是U盘的正常寿命,一般采用MLC颗粒的U盘可擦写1万次以上,而采用SLC颗粒的U盘使用寿命更是长达10万次。

U盘的保养

  正确插拔U盘:绝对不要在闪盘的指示灯闪得飞快时拔出闪盘,因为这时U盘正在读取或写入数据,中途拔出可能会造成硬件、数据的损坏。不要在备份 文档完毕后立即关闭相关的程序,因为那个时候U盘上的指示灯还在闪烁,说明程序还没完全结束,这时拔出U盘,很容易影响备份。所以文件备份到闪盘后,应过 一些时间再关闭相关程序,以防意外;同样道理,在系统提示“无法停止”时也不要轻易拔出U盘,这样也会造成数据遗失。

  注意将U盘放置在干燥的环境中,不要让U盘口接口长时间暴露在空气中,否则容易造成表面金属氧化,降低接口敏感性。

  不要将长时间不用的U盘一直插在USB接口上,否则一方面容易引起接口老化,另一方面对U盘也是一种损耗。

  U盘的数据传送速度一般与数据接口和U盘质量有关,因为U盘用的是FLASH闪存,不象硬盘的存储存在硬盘的转速,他只跟USB的接口类型有 关;以前用于区分速度的USB1.1和USB2.0标准现在已经统一改成USB2.0 Full Speed和USB 2.0 High Speed,在一些检测软件中也可能会显示成 USB2.0 (FS)和 USB2.0 (HS),所以购买的时候一定要确认是HS的接口,要是统一说成USB2.0而没有标明速度一定要当场测试,一般来说HS速度可以达到5~10M/S,而 FS则在1M/S以下,这个很容易区分。

第一、主频,倍频,外频。经常听别人说:“这个CPU的频率是多少多少。。。。”其实这个泛指的频率是指CPU的主频,主频也就是CPU的时钟频 率,英文全称:CPU Clock Speed,简单地说也就是CPU运算时的工作频率。一般说来,主频越高,一个时钟周期里面完成的指令数也越多,当然CPU的速度也就越快了。不过由于各 种各样的CPU它们的内部结构也不尽相同,所以并非所有的时钟频率相同的CPU的性能都一样。至于外频就是系统总线的工作频率;而倍频则是指CPU外频与 主频相差的倍数。三者是有十分密切的关系的:主频=外频x倍频。

第二:内存总线速度,英文全称是Memory-Bus Speed。CPU处理的数据是从哪里来的呢?学过一点计算机基本原理的朋友们都会清楚,是从主存储器那里来的,而主存储器指的就是我们平常所说的内存 了。一般我们放在外存(磁盘或者各种存储介质)上面的资料都要通过内存,再进入CPU进行处理的。所以与内存之间的通道枣内存总线的速度对整个系统性能就 显得很重要了,由于内存和CPU之间的运行速度或多或少会有差异,因此便出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级 (L2)高速缓存和内存之间的通信速度。

第三、扩展总线速度,英文全称是Expansion-Bus Speed。扩展总线指的就是指安装在微机系统上的局部总线如VESA或PCI总线,我们打开电脑的时候会看见一些插槽般的东西,这些就是扩展槽,而扩展总线就是CPU联系这些外部设备的桥梁。

第四:工作电压,英文全称是:Supply Voltage。任何电器在工作的时候都需要电,自然也会有额定的电压,CPU当然也不例外了,工作电压指的也就是CPU正常工作所需的电压。早期 CPU(286枣486时代)的工作电压一般为5V,那是因为当时的制造工艺相对落后,以致于CPU的发热量太大,弄得寿命减短。随着CPU的制造工艺与 主频的提高,近年来各种CPU的工作电压有逐步下降的趋势,以解决发热过高的问题。

第五:地址总线宽度。地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。16位的微机我们就不用说 了,但是对于386以上的微机系统,地址线的宽度为32位,最多可以直接访问4096 MB(4GB)的物理空间。而今天能够用上1GB内存的人还没有多少个呢(服务器除外)。

第六:数据总线宽度。数据总线负责整个系统的数据流量的大小,而数据总线宽度则决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。

第七:协处理器。在486以前的CPU里面,是没有内置协处理器的。由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微 机CPU的浮点运算性能都相当落后,相信接触过386的朋友都知道主板上可以另外加一个外置协处理器,其目的就是为了增强浮点运算的功能。自从486以 后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算,含有内置协处理器的CPU,可以加快特定类型的数值计算,某些需要进行复杂计 算的软件系统,如高版本的AUTO CAD就需要协处理器支持。

第八:超标量。超标量是指在一个时钟周期内CPU可以执行一条以上的指令。这在486或者以前的CPU上是很难想象的,只有Pentium级以上 CPU才具有这种超标量结构;486以下的CPU属于低标量结构,即在这类CPU内执行一条指令至少需要一个或一个以上的时钟周期。

第九:L1高速缓存,也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,这也正是486DLC比386DX- 40快的原因。内置的L1高速缓存的容量和结构对CPU的性能影响较大,容量越大,性能也相对会提高不少,所以这也正是一些公司力争加大L1级高速缓冲存 储器容量的原因。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。

第十:采用回写(Write Back)结构的高速缓存。它对读和写操作均有效,速度较快。而采用写通(Write-through)结构的高速缓存,仅对读操作有效.

第十一:动态处理。动态处理是应用在高能奔腾处理器中的新技术,创造性地把三项专为提高处理器对数据的操作效率而设计的技术融合在一起。这三项技术是多路分流预测、数据流量分析和猜测执行。动态处理并不是简单执行一串指令,而是通过操作数据来提高处理器的工作效率。

动态处理包括了枣1、多路分流预测:通过几个分支对程序流向进行预测,采用多路分流预测算法后,处理器便可参与指令流向的跳转。它预测下一条指令在 内存中位置的精确度可以达到惊人的90%以上。这是因为处理器在取指令时,还会在程序中寻找未来要执行的指令。这个技术可加速向处理器传送任务。2、数据 流量分析:抛开原程序的顺序,分析并重排指令,优化执行顺序:处理器读取经过解码的软件指令,判断该指令能否处理或是否需与其它指令一道处理。然后,处理 器再决定如何优化执行顺序以便高效地处理和执行指令。3、猜测执行:通过提前判读并执行有可能需要的程序指令的方式提高执行速度:当处理器执行指令时(每 次五条),采用的是“猜测执行”的方法。这样可使奔腾II处理器超级处理能力得到充分的发挥,从而提升软件性能。被处理的软件指令是建立在猜测分支基础之 上,因此结果也就作为“预测结果”保留起来。一旦其最终状态能被确定,指令便可返回到其正常顺序并保持永久的机器状态。

CPU是Central Processing Unit的缩写,即中央处理器。CPU发展至今,其中所集成的电子元件也越来越多,上万个晶体管构成了CPU的内部结构。那么这上百万个晶体管是如何工作 的呢?看上去似乎很深奥,但归纳起来,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。CPU的工作原理就象一个工厂对产品的加工过程:进 入工厂的原料(指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储器) 中,最后等着拿到市场上去卖(交由应用程序使用)。

CPU是整个微机系统的核心,它往往是各种档次微机的代名词,CPU的性能大致上反映出微机的性能,因此它的性能指标十分重要。CPU主要的性能指标有:

1.主频,倍频,外频:主频是CPU的时钟频率(CPU Clock Speed)即系统总线的工作频率。一般说来,主频越高,CPU的速度越快。由于内部结构不同,并非所有的时钟频率相同的CPU的性能都一样。外频即系统 总线的工作频率;倍频则是指CPU外频与主频相差的倍数。三者关系是:主频=外频x倍频。

2.内存总线速度(Memory-Bus Speed): 指CPU与二级(L2)高速缓存和内存之间的通信速度。

3.扩展总线速度(Expansion-Bus Speed): 指安装在微机系统上的局部总线如VESA或PCI总线接口卡的工作速度。

4.工作电压(Supply Voltage): 指CPU正常工作所需的电压。早期CPU的工作电压一般为5V,随着CPU主频的提高,CPU工作电压有逐步下降的趋势,以解决发热过高的问题。

5.地址总线宽度:地址总线宽度决定了CPU可以访问的物理地址空间,对于486以上的微机系统,地址线的宽度为32位,最多可以直接访问4096 MB的物理空间。

6.数据总线宽度:数据总线宽度决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。

7.内置协处理器:含有内置协处理器的CPU,可以加快特定类型的数值计算,某些需要进行复杂计算的软件系统,如高版本的AUTO CAD就需要协处理器支持。

8.超标量:是指在一个时钟周期内CPU可以执行一条以上的指令。Pentium级以上CPU均具有超标量结构;而486以下的CPU属于低标量结构,即在这类CPU内执行一条指令至少需要一个或一个以上的时钟周期。

9.L1高速缓存即一级高速缓存:内置高速缓存可以提高CPU的运行效率,这也正是486DLC比386DX-40快的原因。内置的L1高速缓存的 容量和结构对CPU的性能影响较大,这也正是一些公司力争加大L1级高速缓冲存储器容量的原因。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在 CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。

10.采用回写(Write Back)结构的高速缓存:它对读和写操作均有效,速度较快。而采用写通(Write-through)结构的高速缓存,仅对读操作有效。

CPU的外频是CPU乃至整个计算机系统的基准频率,单位是MHz(兆赫兹)。在早期的电脑中,内存与主板之间的同步运行的速度等于外频,在这种方 式下,可以理解为CPU外频直接与内存相连通,实现两者间的同步运行状态。对于目前的计算机系统来说,两者完全可以不相同,但是外频的意义仍然存在,计算 机系统中大多数的频率都是在外频的基础上,乘以一定的倍数来实现,这个倍数可以是大于1的,也可以是小于1的。

说到处理器外频,就要提到与之密切相关的两个概念:倍频与主频,主频就是CPU的时钟频率;倍频即主频与外频之比的倍数。主频、外频、倍频,其关系 式:主频=外频×倍频。外频与前端总线(FSB)频率很容易被混为一谈。前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外 界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影 响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因 此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从 此之后前端总线和外频的区别才开始被人们重视起来。

CPU的倍频,全称是倍频系数。CPU的核心工作频率与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。理论上倍频是从1.5一直到 无限的,但需要注意的是,倍频是以0.5为一个间隔单位。外频与倍频相乘就是主频,所以其中任何一项提高都可以使CPU的主频上升。

原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率 上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频 = 外频 x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。

一个CPU默认的倍频只有一个,主板必须能支持这个倍频。因此在选购主板和CPU时必须注意这点,如果两者不匹配,系统就无法工作。此外,现在CPU的倍频很多已经被锁定,无法修改。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/195761.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • jsp之session学习:session.setAttribute(String name,Object value)&session.getAttribute(String name);

    jsp之session学习:session.setAttribute(String name,Object value)&session.getAttribute(String name);CSDN博客怎么玩的,菜鸟入门;20161208;

    2022年10月17日
  • php+mysql动态网站开发案例课堂_用php写一个网页页面

    php+mysql动态网站开发案例课堂_用php写一个网页页面在这篇文章中,我尽量用最浅显易懂的语言来说明使用PHP,MySQL制作一个动态网站的基本技术。阅读本文需要简单的HTML基础知识和(任一编程语言的)编程基础知识(例如变量、值、循环、语句块的

  • Java设计模式简介(一):创建型模式

    Java设计模式简介(一):创建型模式

  • python 股票历史数据(python获取股票历史数据)

    因为最近需要用到股市的各种指数数据,刚开始想的是从同花顺等交易软件直接导出,结果发现要用滚轮滚到最开始的日期,这过于繁琐了,我对于这种重复性的劳动一向不耐烦,而且这种方法在以后每日更新的时候也很不方便。所以我把视线转向了网上的各种api。网上比较普遍的主要有两种,一种是新浪的api,一种是雅虎的api。新浪的api很方便,速度也很快,不过就网上的资料而言,似乎只能提取当天的数据。雅虎的api功能更齐

  • 毕业设计之我的项目—-旅游管理系统的设计与实现[通俗易懂]

    毕业设计之我的项目—-旅游管理系统的设计与实现[通俗易懂]本项目需求来源于网络,有需要源码和交流的评论额?喜欢软件对软件有着很高程度认识的朋友也可以指出我的设计问题等等。欢迎与我交流角色分析角色:用户:管理员:功能分析用户:登录注册:修改个人信息预定酒店功能个人酒店订单查询:景点信息查询:酒店评价:景点评价:游记功能:增-查线路查询:轮播图:结伴游:…

  • Java分布式应用技术架构介绍

    Java分布式应用技术架构介绍分布式架构的演进系统架构演化历程-初始阶段架构初始阶段的小型系统应用程序、数据库、文件等所有的资源都在一台服务器上通俗称为LAMP特征:应用程序、数据库、文件等所有的资源都在一台服务器上。描述:通常服务器操作系统使用linux,应用程序使用PHP开发,然后部署在Apache上,数据库使用Mysql,汇集各种免费开源软件以及一台廉价服务器就可以开始系统

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号