大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
1.前序遍历
前序遍历(DLR,lchild,data,rchild),是二叉树遍历的一种,也叫做先根遍历、先序遍历、前序周游,可记做根左右。前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。
根结点,然后遍历左子树,最后遍历右子树。
二叉树为空则结束返回,否则:
。
二叉树
其实在遍历二叉树的时候有三次遍历, 比如前序遍历:A->B->D->D(D左子节点并返回到D)->D(D右子节点并返回到D)->B->E->E(左)->E(右)->->B->A->C->F->F(左)->F(右)->C->C(右),所以可以用栈结构,把遍历到的节点压进栈,没子节点时再出栈。也可以用递归的方式,递归的输出当前节点,然后递归的输出左子节点,最后递归的输出右子节点。直接看代码更能理解:
package test;
//前序遍历的递归实现与非递归实现
import java.util.Stack;
public class Test
{
public static void main(String[] args)
{
TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树
for(int i = 0; i < 10; i++)
{
node[i] = new TreeNode(i);
}
for(int i = 0; i < 10; i++)
{
if(i*2+1 < 10)
node[i].left = node[i*2+1];
if(i*2+2 < 10)
node[i].right = node[i*2+2];
}
preOrderRe(node[0]);
}
public static void preOrderRe(TreeNode biTree)
{//递归实现
System.out.println(biTree.value);
TreeNode leftTree = biTree.left;
if(leftTree != null)
{
preOrderRe(leftTree);
}
TreeNode rightTree = biTree.right;
if(rightTree != null)
{
preOrderRe(rightTree);
}
}
public static void preOrder(TreeNode biTree)
{//非递归实现
Stack<TreeNode> stack = new Stack<TreeNode>();
while(biTree != null || !stack.isEmpty())
{
while(biTree != null)
{
System.out.println(biTree.value);
stack.push(biTree);
biTree = biTree.left;
}
if(!stack.isEmpty())
{
biTree = stack.pop();
biTree = biTree.right;
}
}
}
}
class TreeNode//节点结构
{
int value;
TreeNode left;
TreeNode right;
TreeNode(int value)
{
this.value = value;
}
}
2.中序遍历
import java.util.Stack;public class Test { public static void main(String[] args) { TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树 for(int i = 0; i < 10; i++) { node[i] = new TreeNode(i); } for(int i = 0; i < 10; i++) { if(i*2+1 < 10) node[i].left = node[i*2+1]; if(i*2+2 < 10) node[i].right = node[i*2+2]; } midOrderRe(node[0]); System.out.println(); midOrder(node[0]); } public static void midOrderRe(TreeNode biTree) {//中序遍历递归实现 if(biTree == null) return; else { midOrderRe(biTree.left); System.out.println(biTree.value); midOrderRe(biTree.right); } } public static void midOrder(TreeNode biTree) {//中序遍历费递归实现 Stack<TreeNode> stack = new Stack<TreeNode>(); while(biTree != null || !stack.isEmpty()) { while(biTree != null) { stack.push(biTree); biTree = biTree.left; } if(!stack.isEmpty()) { biTree = stack.pop(); System.out.println(biTree.value); biTree = biTree.right; } } }}class TreeNode//节点结构{ int value; TreeNode left; TreeNode right; TreeNode(int value) { this.value = value; }}
3.后序遍历(难点)
二叉树为空则结束返回,
二叉树
算法核心思想:
首先要搞清楚先序、中序、后序的非递归算法共同之处:用栈来保存先前走过的路径,以便可以在访问完子树后,可以利用栈中的信息,回退到当前节点的双亲节点,进行下一步操作。
后序遍历的非递归算法是三种顺序中最复杂的,原因在于,后序遍历是先访问左、右子树,再访问根节点,而在非递归算法中,利用栈回退到时,并不知道是从左子树回退到根节点,还是从右子树回退到根节点,如果从左子树回退到根节点,此时就应该去访问右子树,而如果从右子树回退到根节点,此时就应该访问根节点。所以相比前序和后序,必须得在压栈时添加信息,以便在退栈时可以知道是从左子树返回,还是从右子树返回进而决定下一步的操作。
import java.util.Stack;public class Test { public static void main(String[] args) { TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树 for(int i = 0; i < 10; i++) { node[i] = new TreeNode(i); } for(int i = 0; i < 10; i++) { if(i*2+1 < 10) node[i].left = node[i*2+1]; if(i*2+2 < 10) node[i].right = node[i*2+2]; } postOrderRe(node[0]); System.out.println("***"); postOrder(node[0]); } public static void postOrderRe(TreeNode biTree) {//后序遍历递归实现 if(biTree == null) return; else { postOrderRe(biTree.left); postOrderRe(biTree.right); System.out.println(biTree.value); } } public static void postOrder(TreeNode biTree) {//后序遍历非递归实现 int left = 1;//在辅助栈里表示左节点 int right = 2;//在辅助栈里表示右节点 Stack<TreeNode> stack = new Stack<TreeNode>(); Stack<Integer> stack2 = new Stack<Integer>();//辅助栈,用来判断子节点返回父节点时处于左节点还是右节点。 while(biTree != null || !stack.empty()) { while(biTree != null) {//将节点压入栈1,并在栈2将节点标记为左节点 stack.push(biTree); stack2.push(left); biTree = biTree.left; } while(!stack.empty() && stack2.peek() == right) {//如果是从右子节点返回父节点,则任务完成,将两个栈的栈顶弹出 stack2.pop(); System.out.println(stack.pop().value); } if(!stack.empty() && stack2.peek() == left) {//如果是从左子节点返回父节点,则将标记改为右子节点 stack2.pop(); stack2.push(right); biTree = stack.peek().right; } } }}class TreeNode//节点结构{ int value; TreeNode left; TreeNode right; TreeNode(int value) { this.value = value; }}
4.层次遍历
与树的前中后序遍历的DFS思想不同,层次遍历用到的是BFS思想。一般DFS用递归去实现(也可以用栈实现),BFS需要用队列去实现。
层次遍历的步骤是:
1.对于不为空的结点,先把该结点加入到队列中
2.从队中拿出结点,如果该结点的左右结点不为空,就分别把左右结点加入到队列中
3.重复以上操作直到队列为空
public static void levelOrder(TreeNode biTree)
{//层次遍历
if(biTree == null)
return;
LinkedList<TreeNode> list = new LinkedList<TreeNode>();
list.add(biTree);
TreeNode currentNode;
while(!list.isEmpty())
{
currentNode = list.poll();
System.out.println(currentNode.value);
if(currentNode.left != null)
list.add(currentNode.left);
if(currentNode.right != null)
list.add(currentNode.right);
}
}
先序遍历特点:第一个值是根节点
中序遍历特点:根节点左边都是左子树,右边都是右子树
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/193827.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...