Mysql 慢查询优化实践

Mysql 慢查询优化实践

Mysql 慢查询优化实践

目标:

提高mysql运行效率,增加并发,提高响应速度

方案:

通过阿里云给的慢查询日志excel,对耗时长,开销大的sql语句进行优化,提升访问速度服务器运行效率

实践:

分析 阿里云给的数据库单日报表有以下字段

  • Create Time DBName
  • MySQL Total Execution Counts
  • MySQL Total Execution Times
  • Max Execution Time
  • Max Lock Time
  • Parse Total Row Counts
  • Parse Max Row Count
  • Return Total Row Counts
  • Return Max Row Count
  • SQL Text
  • hard ware- latencies

分别是

  • 创建时间
  • 数据库名
  • mysql总执行数目
  • muysql总执行耗时
  • 最大执行耗时
  • 最大锁耗时
  • 解析总行数统计
  • 解析最大行数
  • 返回总计行数
  • 返回最大行数
  • sql语句
  • 硬件延迟

根据阿里云提供的慢查询记录,本次采用的优化策略如下:

查询次数超过100次/日的高频需求,按照最大查询/总查询用时最大,依次优化取得的优化收益最高.

第一条语句:

执行次数: 1114 最大耗时: 7 解析最大行数: 348325 返回最大行数 4 #执行次数: 1114 最大耗时: 7 解析最大行数: 348325 返回最大行数 4

select id from appname_m_members where yiku_id = :1
复制代码

可以看出,这个简单的sql不应该有这么大的解析行数,甚至最高要七秒钟.
初步判断没有在yiku_id这个字段加索引的可能性最大.现在我们需要寻求各种办法来验证下我们的猜测

分析
explain select id from appname_m_members where yiku_id = 1;
复制代码

可以看到的确是没有给yiku_id增加索引.

索引的特点
对于查询操作能迅速缩小查询范围,减少row的数量,指数级提高查询速度点
对于写操作,因为需要维护索引的变更,有一定开销.如果遇到大量并发写入,会有负面影响.
在这个表用来记录我们微信用户和应用id的关系,所以读的操作较之写操作更多,所以能够增加索引.

#增加索引

ALTER TABLE `appname_m_members` 
ADD INDEX `yiku_id` (`yiku_id`) ;
复制代码

尝试增加索引之后,再次分析语句的执行

结果:

匹配范围 rows 从32w 降低到1

可以看到type从all的全表扫描变成ref的单个行的索引访问,rows从全表32w降为1,说明添加索引对这条语句产生了巨大效果.

第二条语句:

执行次数: 482 最大耗时: 15 解析最大行数: 764383 返回最大行数: 482

#执行次数: 482 最大耗时: 15 解析最大行数: 764383 返回最大行数: 482
select fullname as username , linkphone as userphone , 
`userimage` , `nickname` , `hospitalname` , `partmentname` , 
`doctortitle` , `iscertification` , `fullname` 
from `users` 
where `useruuid` = '597_f66e1cb79341cedf6f24aaf01fde8611' limit 1;
复制代码
分析:

对其增加索引:
#增加索引
ALTER TABLE `users` 
ADD INDEX `useruuid` (`useruuid`);
复制代码

直接将扫描范围(rows)从72w降到了1,提升明显

结果:

匹配范围 rows 从72w 降低到1

第三条语句:

执行次数: 820 最大耗时: 10 解析最大行数: 167214 返回最大行数 1

#执行次数: 820 最大耗时: 10 解析最大行数: 167214 返回最大行数 1
select count ( postingid ) as postnum from mediposting 
where isaudit != :1
and isgoodcase = :2
and postsection = :3
复制代码
分析:

改变sql语句的顺序,按照最左原则修改如下

select count(postingid) as postnum from mediposting 
where postsection = 1
and isgoodcase = 1
and isaudit != 1
复制代码
结果:

主要使用的是 postsection 作为索引来统计总数,这部分无需优化.

##### 第四条语句:
执行次数: 482 最大耗时: 15 解析最大行数: 764383 返回最大行数: 482
##执行次数: 410 最大耗时: 10 解析最大行数:348325 返回最大行数 1
........
复制代码
结果: 语句过长(2017个字符),嵌套了逻辑,暂不优化
第五条语句:

执行次数: 659 最大耗时: 6 解析最大行数:215115 返回最大行数 659

## 执行次数: 659 最大耗时: 6 解析最大行数:215115 返回最大行数 659
select `medigooddoc`.`docid` , `medigooddoc`.`docname` ,
 `medigooddoc`.`doctitle` , `medigooddoc`.`docimgurl` ,
  `medigooddoc`.`docdep` , `medigooddoc`.`dochospital` ,
   ( initalscore+effectevaladd ) as `effectval` 
   from `medigooddoc` 
   where ( ( initalscore+effectevaladd ) > 80 ) 
   order by rand ( ) limit 1 ;
复制代码
分析:

rand()函数放在order by后面会被执行多次,优化方式: 求出随机id后,取得对应记录

select `medigooddoc`.`docid` , `medigooddoc`.`docname` ,
 `medigooddoc`.`doctitle` , `medigooddoc`.`docimgurl` ,
 `medigooddoc`.`docdep` , `medigooddoc`.`dochospital` ,
 ( initalscore+effectevaladd ) as `effectval` 
 from `medigooddoc` 
 where (initalscore+effectevaladd)  > 80
 and docid > ( 
     RAND() * (
         (SELECT MAX(docid) FROM `medigooddoc`) 
         -
         (SELECT MIN(docid) FROM `medigooddoc`)
    )
    +
    (SELECT MIN(docid) FROM `medigooddoc`) 
 )
 order by `docid` limit 1;
复制代码

优化前语句:

可以看到扫描范围很大(rows) 120 770行.

可以看到

  • 查询范围最小(rows) 1
  • 获取最大值/最小值是直接从mysql查询优化器返回数据(extra).mysql文档中有以下解释:

The query contained only aggregate functions (MIN(), MAX()) that were all resolved using an index, or COUNT(*) for MyISAM, and no GROUP BY clause. The optimizer determined that only one row should be returned.

测试执行效率:

  • 执行10次 a: 2 941 ms b: 168 ms
  • 执行50次 a: 14 441 ms b: 828 ms
  • 执行100次a: 29 126 ms b: 1 645 ms

可以看到每百次运行时间已经从30s缩短到不到2秒,大大提高查询mysql响应速度. 但是还有个问题,总共100 000的id,原来的语句查询出的结果比较平衡,有过万也有几千,但是用这个语句后,总是出现小于一万的id,结果在我们预期之外.

修正概率偏差

方案1:

增加一次对数据库消耗不大的表查询

# php
$round = select max(docid) as max,min(docid) as min from medigooddoc;
$rand = rand($round['min'],$round['max']);
复制代码
# sql
select `medigooddoc`.`docid` , `medigooddoc`.`docname` ,
 `medigooddoc`.`doctitle` , `medigooddoc`.`docimgurl` ,
 `medigooddoc`.`docdep` , `medigooddoc`.`dochospital` ,
 ( initalscore+effectevaladd ) as `effectval` 
 from `medigooddoc` 
 where (initalscore+effectevaladd)  > 80
 and docid > $rand
 order by `docid` limit 1;
复制代码

这样的问题是:会多产生一个sql交互,数据库

方案2:

使用内连接 join 优化

#可用一
select `docid` ,`docname`,
 `doctitle` , `docimgurl` ,
 `docdep` , `dochospital` ,
 ( initalscore+effectevaladd ) as `effectval` 
 from `medigooddoc` as t1 
 join (
     select rand() * (select max(docid) from `medigooddoc`) 
     as rand
 ) as t2 
 where (t1.initalscore+t1.effectevaladd)  > 80
 and `t1`.`docid` >= t2.rand
 order by `docid` limit 1;
复制代码

但是这样有一个问题:并不是完全平均落到每条记录上,因为记录并不是连续的

修正概率 rand * 数量范围,这样概率平均到整张表存在的记录中.

select `docid` ,`docname`,
 `doctitle` , `docimgurl` ,
 `docdep` , `dochospital` ,
 ( initalscore+effectevaladd ) as `effectval` 
 from `medigooddoc` as t1 
 join (
     select rand() * 
     (
         (select max(docid) from `medigooddoc`)
         -
         (select min(docid) from `medigooddoc`)
     )
     +
     (select min(docid) from `medigooddoc`)  
     as rand
 ) as t2 
 where (t1.initalscore+t1.effectevaladd)  > 80
 and `t1`.`docid` >= t2.rand
 order by `docid` limit 1;
复制代码

综合来说,因为方案1 产生了更多的数据库交互,因为我们的数据库是另一台服务器,网络连接开销是比较大的,额外的查询也会在高并发的时刻对数据库产生更大压力.

而方案2采用内连接的方式,仅需要一次数据库交互就能完成,最大最小值也是直接由mysql查询器返回,减少了种种数据库性能开销.故采用为最佳方案..

结果:

使用mysql保存的表结构信息替代了order rand()的低效率查询.

深入理解:

第六条语句:

执行次数: 729 最大耗时: 4秒 解析最大行数:130898 返回最大行数 2

select `medigooddoc`.`docid` , `medigooddoc`.`yikuid` 
from `medigooddoc` 
where ( yikuid = 597725 or yikuid = -597725 );
复制代码
分析:

优化方案:

字段yikuid加索引

ALTER TABLE `medigooddoc`
ADD INDEX `YiKuID` (`YiKuID`);
复制代码

再次执行explain分析

结果:

匹配范围 rows 从8.3w 降低到1

第七条语句

执行次数: 474 最大耗时: 5秒 解析最大行数:261797 返回最大行数 1

select `medigooddoc`.`docid` , `medigooddoc`.`docname` ,
 `medigooddoc`.`doctitle` , `medigooddoc`.`docimgurl` 
 from `medigooddoc` order by rand ( ) limit 1;
复制代码
分析

方案

将获取一条随机记录 由order by rand() limit 1 改为 内连接方式

select `docid`, `docname`,
  `doctitle` , `docimgurl` 
 from `medigooddoc` as  t1 
 inner join 
 (
     select rand()  *
     (
         (select MAX(docid) from `medigooddoc`)
         -
         (select MIN(docid) from `medigooddoc`)
     )
     +
     (select MIN(docid) from `medigooddoc`)
     as rand
 ) as t2 
 on t1.docid >= t2.rand
 order by docid limit 1;
复制代码

再次执行explain分析

结果

用mysql存储的表信息替代了效率低下的order by rand()

第八条语句

执行次数: 136 最大耗时: 7秒 解析最大行数:301880 返回最大行数 1

select `searchrecords`.`searchid` , `searchrecords`.`searchnum` 
from `searchrecords` 
where ( searchtype = 0 ) and ( userid = 14 ) 
and ( searchmsg = '碳酸钙D3' );
复制代码
分析

方案

索引的目的是为了缩小查询范围,通过文字内容的前三个字区分,通过userid进行区分,可以得到范围更精确的语句执行

ALTER TABLE searchrecords ADD INDEX searchmsg (searchmsg(5));
ALTER TABLE searchrecords ADD INDEX userid (userid);
复制代码

通过文本前5个字建立索引来区分范围后,范围缩小到28个记录

再通过用户ID建立索引,进一步缩小范围,仅需要查找1条记录

分析索引对写入的影响 表主要用来记录用户搜索的高频词,主要的写操作时更新统计字段,这两个新增索引的字段并不会频繁更新,故索引开销不大.

结果

匹配范围从 29w 缩小到 1

第九条语句
select `projects`.`id` , `projects`.`guid` , 
`projects`.`getittime` , `projects`.`keywords` ,
 `projects`.`barcode` as `num` , `projects`.`goodcasedep` ,
  `projects`.`bingshi` , `pictures`.* 
  from `projects` 
  inner join `pictures` on projects.guid = pictures.projectid 
  and pictures.filetype = :1 
  where ( islock != :2 ) and ( isgoodcase = :3 ) 
  and ( ( goodcasedep like :4 or goodcasedep like :5 
  or goodcasedep like :6 or goodcasedep like :7 
  or goodcasedep like :8 or goodcasedep like :9 
  or goodcasedep like :10 or goodcasedep like :11 
  or goodcasedep like :12 or goodcasedep like :13 
  or goodcasedep like :14 or goodcasedep like :15 
  or goodcasedep like :16 or goodcasedep like :17 
  or goodcasedep like :18 or goodcasedep like :19 
  or goodcasedep like :20 or goodcasedep like :21 
  or goodcasedep like :22 or goodcasedep like :23 
  or goodcasedep like :24 or goodcasedep like :25 
  or goodcasedep like :26 or goodcasedep like :27 
  or goodcasedep like :28 or goodcasedep like :29 
  or goodcasedep like :30 or goodcasedep like :31 
  or goodcasedep like :32 or goodcasedep like :33 
  or goodcasedep like :34 or goodcasedep like :35 
  or goodcasedep like :36 or goodcasedep like :37 
  or goodcasedep like :38 or goodcasedep like :39 
  or goodcasedep like :40 or goodcasedep like :41 ) ) 
  order by rand ( ) limit :42
复制代码
结果:

暂不修改:超过字节限制

第十条语句

执行次数: 145 最大耗时: 2秒 解析最大行数:130898 返回最大行数 1

select `medigooddoc`.`isfollow` , `medigooddoc`.`isconsult` ,
 `medigooddoc`.`isphone` , `medigooddoc`.`isprivate` 
 from `medigooddoc` where ( yikuid =  694 );
复制代码
分析:

方案

增加索引

ALTER TABLE `medigooddoc` ADD INDEX YiKuID(`YiKuID`);
复制代码

再次执行explain分析

结果

匹配范围从12w缩小到1

第十一条

执行次数: 148 最大耗时: 3秒 解析最大行数:74616 返回最大行数 30

select `magazinearticle`.`articleid` , 
`magazinearticle`.`articletitle` , 
`magazinearticle`.`article_publishtime` ,
 `magazinearticle`.`articlepicpath` ,
  `magazinearticle`.`articleurl` ,
   `magazinearticle`.`articlenum` ,
    `magazinearticle`.`perid` ,
     `magazinearticle`.`article_originallink` ,
      `magazinearticle`.`islink` from `magazinearticle` 
      where ( logicdel = 0 ) and ( perid != 60 ) 
      order by `article_publishtime` desc limit 1,30;
复制代码
分析:

方案:

由于是读多写少的文章表,增加索引适用这类场景,提高查询响应速度.

ALTER TABLE `magazinearticle` ADD INDEX 
article_publishtime(`article_publishtime`);
复制代码

再次执行explain分析

结果:

匹配范围 rows 从2w缩小到59

深入理解:

explain type的不同种类

类型 含义
类型 含义
system 表只有一行
const 表最多只有一行匹配,通用用于主键或者唯一索引比较时
eq_ref 每次与之前的表合并行都只在该表读取一行,这是除了system,const之外最好的一种,特点是使用=,而且索引的所有部分都参与join且索引是主键或非空唯一键的索引
ref 如果每次只匹配少数行,那就是比较好的一种,使用=或<=>,可以是左覆盖索引或非主键或非唯一键
fulltext 全文搜索
ref_or_null 与ref类似,但包括NULL
index_merge 表示出现了索引合并优化(包括交集,并集以及交集之间的并集),但不包括跨表和全文索引。
这个比较复杂,目前的理解是合并单表的范围索引扫描(如果成本估算比普通的range要更优的话)
unique_subquery 在in子查询中,就是value in (select…)把形如“select unique_key_column”的子查询替换。
PS:所以不一定in子句中使用子查询就是低效的!
index_subquery 同上,但把形如”select non_unique_key_column“的子查询替换
range 常数值的范围
index a.当查询是索引覆盖的,即所有数据均可从索引树获取的时候(Extra中有Using Index)
b.以索引顺序从索引中查找数据行的全表扫描(无 Using Index);
c.如果Extra中Using Index与Using Where同时出现的话,则是利用索引查找键值的意思;
d.如单独出现,则是用读索引来代替读行,但不用于查找
all 全表扫描
第十二条

执行次数: 135 最大耗时: 3秒 解析最大行数:78395 返回最大行数 0

select distinct userid from weekhosnominate 
where userid = 351211 and datatype = 4
复制代码
分析

方案
ALTER TABLE `weekhosnominate` ADD INDEX UserID(`UserID`);
复制代码

再次执行explain分析

结果

匹配范围 rows 从1w缩小到288

第十三条

执行次数: 110 最大耗时: 2秒 解析最大行数:87693 返回最大行数 1

select `inspectioninfo`.`itemmsg` from `inspectioninfo` 
where ( itemid in ( 30 ,31 ) and itemtype = 0
and inspectionid = 109 ) limit 1 ;
复制代码
分析

方案:

增加索引

ALTER TABLE `inspectioninfo` ADD INDEX 
InspectionID(`InspectionID`);
复制代码

再次执行explain分析

结果

匹配范围 rows 从 5w 缩小到 13

第十四条语句

执行次数: 103 最大耗时: 2秒 解析最大行数:78395 返回最大行数 0

select `weekhosnominate`.`id` from `weekhosnominate` 
where ( userid = 351211 );
复制代码
分析:

方案:

通过给字段 userid 建立索引来区分,缩小范围

ALTER TABLE `weekhosnominate` ADD INDEX UserID(UserID) ;
复制代码

再次执行explain分析可以发现, 通过索引 userid 将范围由全表扫描的近万到索引指向的数十条记录.

结果:

匹配范围 rows 从 9k 缩小到 288

深入理解:

mysql结构

mysql索引原理

索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?

索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。

数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

硬件处理延迟

REFER:

MySQL索引原理及慢查询优化

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/101147.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • oracle创建用户、密码、分配权限、基本权限的作用「建议收藏」

    oracle创建用户、密码、分配权限、基本权限的作用「建议收藏」创建用户和密码:createuserusernameidentifiedbypassword;//建用户名和密码例子:oracle,oracle分配权限:grantconnect,resource,dbatousername;//授权例子:grantconnect,resource,dba,sysdbatousername;创建同义词:创建同义词…

  • mybatis log plugin 激活码【2021.7最新】

    (mybatis log plugin 激活码)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.htmlMLZPB5EL5Q-eyJsa…

  • 关闭eslint检测[通俗易懂]

    关闭eslint检测[通俗易懂]bulid>webpack.base.config.js将createLintingRule方法内容注释转载文章关闭eslint检测

  • httpclient4下载图片 java实现[通俗易懂]

    httpclient4下载图片 java实现[通俗易懂]有时候需要从网上抓取一下图片jpg、png等,也可以抓取zip等,这样就需要写程序才能达到想要的效果,下面是用httpclient4做一个工具类,非常的好用packagecom.wamei.tool;importjava.awt.image.BufferedImage;importjava.io.File;importjava.io.FileOutputStream;

  • apache 虚拟主机如何配置[通俗易懂]

    apache 虚拟主机如何配置[通俗易懂]apache虚拟主机如何配置?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。apache虚拟主机就是在apache服务器上配置多个虚拟主机,从而让一个服务器提供多站点的服务实现。通俗来说,就是对同一个服务器上的不同目录进行访问。Apache基于名字的虚拟主机设置这种方式,各个虚拟主机共享同一份Apache,因此有CGI程序运行时,安全性也不高。设置这种虚拟主机时,只要为每一个虚拟主机设置类似如下的信息即可,NameV…

  • vue双向绑定指令[通俗易懂]

    vue双向绑定指令[通俗易懂]vue双向绑定指令

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号