基于rgbd的三维重建_3d map generator 教程

基于rgbd的三维重建_3d map generator 教程Open3d-doc-RGBD场景重建

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

RGBD重建场景


本文从摘抄于Open3D官方文档

1 系统总览

该system一共有四个重要步骤:

  1. 制作片段:从输入RGBD序列的短子序列构建局部几何表面(称为片段)。这部分使用RGBD里程计、Multiway注册和RGBD积分;
  2. 注册片段:片段在全局空间中对齐以检测闭环。本部分使用全局注册、ICP注册、Multiway注册;
  3. 精细配准:使注册片段后更加紧密对齐,这部分使用ICP注册和Multiway注册;
  4. 场景整合:整合RGB-D图像以生成场景的网络模型。

1.1 数据集举例

我们将使用the SceneNN dataset来演示本教程的系统框架。另外,还有很多优秀的RGBD数据集,例如Redwood 数据、TUM RGBD 数据、ICL-NUIM 数据和 SUN3D 数据。

本教程使用SceneNN数据集中的序列016,可通过使用此快速链接来下载RGBD序列。一些帮助脚本可以从reconstruction_system/scripts找到.

1.2 快速开始

将所有RGB图像放入image文件夹中,所有深度图像放入depth文件夹中,在open3d根目录中运行以下命令

cd examples/python/reconstruction_system/
python run_system.py [config_file] [--make] [--register] [--refine] [--integrate]

config_file有以下参数和文件路径。例如,reconstruction_system/config/tutorial.json有以下脚本内容:

{ 
   
    "name": "Open3D reconstruction tutorial http://open3d.org/docs/release/tutorial/reconstruction_system/system_overview.html",
    "path_dataset": "dataset/tutorial/",
    "path_intrinsic": "",
    "max_depth": 3.0,
    "voxel_size": 0.05,
    "max_depth_diff": 0.07,
    "preference_loop_closure_odometry": 0.1,
    "preference_loop_closure_registration": 5.0,
    "tsdf_cubic_size": 3.0,
    "icp_method": "color",
    "global_registration": "ransac",
    "python_multi_threading": true
}

我们假设image和depth是同步配准的。path_intrinsic指定存储相机内参矩阵的json文件的路径。如果未给出,则使用PrimeSense出厂设置。对于自己创建的数据集,在使用系统前,使用适当的相机内参并可视化深度图。

python_multi_threading:true利用joblib使用每个CPU内核并行化系统。

1.3 制作数据集

一个利用Intel RealSense camara制作数据集的例子,更多细节click

2 制作片段

场景重建的第一步是利用短RGBD序列来创建片段

2.1 输入

该脚本使用python run_system.py [config] --make运行。在[config]中,["path_dataset"]应该有imagedepth子文件夹来分别存放彩色图像和深度图像。我们假设彩色图像和深度图像是同步和配准的。在[config]中,可选参数[path_intrinsic]指定存储相机内参矩阵的json文件路径。

2.2 利用一对RGBD图像完成注册

# examples/python/reconstruction_system/make_fragments.py
def register_one_rgbd_pair(s, t, color_files, depth_files, intrinsic,
                           with_opencv, config):
    source_rgbd_image = read_rgbd_image(color_files[s], depth_files[s], True,
                                        config)
    target_rgbd_image = read_rgbd_image(color_files[t], depth_files[t], True,
                                        config)

    option = o3d.pipelines.odometry.OdometryOption()
    option.max_depth_diff = config["max_depth_diff"]
    if abs(s - t) != 1:
        if with_opencv:
            success_5pt, odo_init = pose_estimation(source_rgbd_image,
                                                    target_rgbd_image,
                                                    intrinsic, False)
            if success_5pt:
                [success, trans, info
                ] = o3d.pipelines.odometry.compute_rgbd_odometry(
                    source_rgbd_image, target_rgbd_image, intrinsic, odo_init,
                    o3d.pipelines.odometry.RGBDOdometryJacobianFromHybridTerm(),
                    option)
                return [success, trans, info]
        return [False, np.identity(4), np.identity(6)]
    else:
        odo_init = np.identity(4)
        [success, trans, info] = o3d.pipelines.odometry.compute_rgbd_odometry(
            source_rgbd_image, target_rgbd_image, intrinsic, odo_init,
            o3d.pipelines.odometry.RGBDOdometryJacobianFromHybridTerm(), option)
        return [success, trans, info]

该函数读取一对RGBD图像,并将source_rgbd_image注册到target_rgbd_image。其中,compute_rgbd_odometry是用来对齐RGBD图像的。对于相邻的RGBD图像,使用单位矩阵初始化。对于不相邻的RGBD图像,使用宽基线匹配作为初始化。特别的,pose_estimation计算OpenCV ORB特征来匹配基线图像上的稀疏特征,然后执行RANSAC来估计粗略对齐,用作compute_rgbd_odometry的初始化。

2.3 Multiway注册

# examples/python/reconstruction_system/make_fragments.py
def make_posegraph_for_fragment(path_dataset, sid, eid, color_files,
                                depth_files, fragment_id, n_fragments,
                                intrinsic, with_opencv, config):
    o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
    pose_graph = o3d.pipelines.registration.PoseGraph()
    trans_odometry = np.identity(4)
    pose_graph.nodes.append(
        o3d.pipelines.registration.PoseGraphNode(trans_odometry))
    for s in range(sid, eid):
        for t in range(s + 1, eid):
            # odometry
            if t == s + 1:
                print(
                    "Fragment %03d / %03d :: RGBD matching between frame : %d and %d"
                    % (fragment_id, n_fragments - 1, s, t))
                [success, trans,
                 info] = register_one_rgbd_pair(s, t, color_files, depth_files,
                                                intrinsic, with_opencv, config)
                trans_odometry = np.dot(trans, trans_odometry)
                trans_odometry_inv = np.linalg.inv(trans_odometry)
                pose_graph.nodes.append(
                    o3d.pipelines.registration.PoseGraphNode(
                        trans_odometry_inv))
                pose_graph.edges.append(
                    o3d.pipelines.registration.PoseGraphEdge(s - sid,
                                                             t - sid,
                                                             trans,
                                                             info,
                                                             uncertain=False))

            # keyframe loop closure
            if s % config['n_keyframes_per_n_frame'] == 0 \
                    and t % config['n_keyframes_per_n_frame'] == 0:
                print(
                    "Fragment %03d / %03d :: RGBD matching between frame : %d and %d"
                    % (fragment_id, n_fragments - 1, s, t))
                [success, trans,
                 info] = register_one_rgbd_pair(s, t, color_files, depth_files,
                                                intrinsic, with_opencv, config)
                if success:
                    pose_graph.edges.append(
                        o3d.pipelines.registration.PoseGraphEdge(
                            s - sid, t - sid, trans, info, uncertain=True))
    o3d.io.write_pose_graph(
        join(path_dataset, config["template_fragment_posegraph"] % fragment_id),
        pose_graph)

此脚本使用Multiway注册。make_posegraph_for_fragment为该序列中所有RGBD图像的Multiway注册构建位姿图。每个图节点代表一个RGBD图像,并将几何转换为全局片段空间的位姿。为了效率,只是用关键帧。

一旦一个位姿图被创建,将执行optimize_posegraph_for_fragment,为了估计RGBD图像的位姿。

# examples/python/reconstruction_system/optimize_posegraph.py
def optimize_posegraph_for_fragment(path_dataset, fragment_id, config):
    pose_graph_name = join(path_dataset,
                           config["template_fragment_posegraph"] % fragment_id)
    pose_graph_optimized_name = join(
        path_dataset,
        config["template_fragment_posegraph_optimized"] % fragment_id)
    run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
            max_correspondence_distance = config["max_depth_diff"],
            preference_loop_closure = \
            config["preference_loop_closure_odometry"])

2.4 制作一个片段

# examples/python/reconstruction_system/make_fragments.py
def integrate_rgb_frames_for_fragment(color_files, depth_files, fragment_id,
                                      n_fragments, pose_graph_name, intrinsic,
                                      config):
    pose_graph = o3d.io.read_pose_graph(pose_graph_name)
    volume = o3d.pipelines.integration.ScalableTSDFVolume(
        voxel_length=config["tsdf_cubic_size"] / 512.0,
        sdf_trunc=0.04,
        color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8)
    for i in range(len(pose_graph.nodes)):
        i_abs = fragment_id * config['n_frames_per_fragment'] + i
        print(
            "Fragment %03d / %03d :: integrate rgbd frame %d (%d of %d)." %
            (fragment_id, n_fragments - 1, i_abs, i + 1, len(pose_graph.nodes)))
        rgbd = read_rgbd_image(color_files[i_abs], depth_files[i_abs], False,
                               config)
        pose = pose_graph.nodes[i].pose
        volume.integrate(rgbd, intrinsic, np.linalg.inv(pose))
    mesh = volume.extract_triangle_mesh()
    mesh.compute_vertex_normals()
    return mesh

一旦一个位姿被估计,RGBD integration被用来从RGBD序列中重建一个彩色片段。

2.5 批量处理

# examples/python/reconstruction_system/make_fragments.py
def run(config):

    print("making fragments from RGBD sequence.")
    make_clean_folder(join(config["path_dataset"], config["folder_fragment"]))

    [color_files, depth_files] = get_rgbd_file_lists(config["path_dataset"])
    n_files = len(color_files)
    n_fragments = int(
        math.ceil(float(n_files) / config['n_frames_per_fragment']))

    if config["python_multi_threading"] is True:
        from joblib import Parallel, delayed
        import multiprocessing
        import subprocess
        MAX_THREAD = min(multiprocessing.cpu_count(), n_fragments)
        Parallel(n_jobs=MAX_THREAD)(delayed(process_single_fragment)(
            fragment_id, color_files, depth_files, n_files, n_fragments, config)
                                    for fragment_id in range(n_fragments))
    else:
        for fragment_id in range(n_fragments):
            process_single_fragment(fragment_id, color_files, depth_files,
                                    n_files, n_fragments, config)

2.6 结果

在dataset文件夹中生成fragment文件夹

3 片段注册

一旦场景的片段被创建,下一步就是将他们在全局空间中对齐。

3.1 输入

脚本运行为python run_system.py [config] --register。在[config]中,["path_dataset"]应该有一个以.ply格式存储片段的子文件夹fragments和一个位姿图文件.json

主要函数为make_posegraph_for_sceneoptimize_posegraph_for_scene。第一个函数执行图像对注册,第二个函数执行多路注册(Multiway注册)

3.2 处理点云

# examples/python/reconstruction_system/register_fragments.py
def preprocess_point_cloud(pcd, config):
    voxel_size = config["voxel_size"]
    pcd_down = pcd.voxel_down_sample(voxel_size)
    pcd_down.estimate_normals(
        o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 2.0,
                                             max_nn=30))
    pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
        pcd_down,
        o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 5.0,
                                             max_nn=100))
    return (pcd_down, pcd_fpfh)

这个函数对点云进行下采样,使其更稀疏且分布规律。法线和FPFH特征是预先计算的。

3.3 计算初始注册

# examples/python/reconstruction_system/register_fragments.py
def compute_initial_registration(s, t, source_down, target_down, source_fpfh,
                                 target_fpfh, path_dataset, config):

    if t == s + 1:  # odometry case
        print("Using RGBD odometry")
        pose_graph_frag = o3d.io.read_pose_graph(
            join(path_dataset,
                 config["template_fragment_posegraph_optimized"] % s))
        n_nodes = len(pose_graph_frag.nodes)
        transformation_init = np.linalg.inv(pose_graph_frag.nodes[n_nodes -
                                                                  1].pose)
        (transformation, information) = \
                multiscale_icp(source_down, target_down,
                [config["voxel_size"]], [50], config, transformation_init)
    else:  # loop closure case
        (success, transformation,
         information) = register_point_cloud_fpfh(source_down, target_down,
                                                  source_fpfh, target_fpfh,
                                                  config)
        if not success:
            print("No reasonable solution. Skip this pair")
            return (False, np.identity(4), np.zeros((6, 6)))
    print(transformation)

    if config["debug_mode"]:
        draw_registration_result(source_down, target_down, transformation)
    return (True, transformation, information)

此片段计算两个片段之间的粗略对齐。如果片段是相邻片段,则粗略对齐由从Make fragment获得的aggregating RGBD里程计确定。否则调用register_cloud_fpfh来进行全局注册。注意,全局注册不太可靠。

3.4 全局匹配对注册

# examples/python/reconstruction_system/register_fragments.py
def register_point_cloud_fpfh(source, target, source_fpfh, target_fpfh, config):
    distance_threshold = config["voxel_size"] * 1.4
    if config["global_registration"] == "fgr":
        result = o3d.pipelines.registration.registration_fgr_based_on_feature_matching(
            source, target, source_fpfh, target_fpfh,
            o3d.pipelines.registration.FastGlobalRegistrationOption(
                maximum_correspondence_distance=distance_threshold))
    if config["global_registration"] == "ransac":
        result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
            source, target, source_fpfh, target_fpfh, True, distance_threshold,
            o3d.pipelines.registration.TransformationEstimationPointToPoint(
                False), 3,
            [
                o3d.pipelines.registration.
                CorrespondenceCheckerBasedOnEdgeLength(0.9),
                o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(
                    distance_threshold)
            ],
            o3d.pipelines.registration.RANSACConvergenceCriteria(
                1000000, 0.999))
    if (result.transformation.trace() == 4.0):
        return (False, np.identity(4), np.zeros((6, 6)))
    information = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
        source, target, distance_threshold, result.transformation)
    if information[5, 5] / min(len(source.points), len(target.points)) < 0.3:
        return (False, np.identity(4), np.zeros((6, 6)))
    return (True, result.transformation, information)

这个函数使用RANSACFast global registration来完成匹配对全局注册

3.5 Multiway注册

# examples/python/reconstruction_system/register_fragments.py
def update_posegraph_for_scene(s, t, transformation, information, odometry,
                               pose_graph):
    if t == s + 1:  # odometry case
        odometry = np.dot(transformation, odometry)
        odometry_inv = np.linalg.inv(odometry)
        pose_graph.nodes.append(
            o3d.pipelines.registration.PoseGraphNode(odometry_inv))
        pose_graph.edges.append(
            o3d.pipelines.registration.PoseGraphEdge(s,
                                                     t,
                                                     transformation,
                                                     information,
                                                     uncertain=False))
    else:  # loop closure case
        pose_graph.edges.append(
            o3d.pipelines.registration.PoseGraphEdge(s,
                                                     t,
                                                     transformation,
                                                     information,
                                                     uncertain=True))
    return (odometry, pose_graph)

这个脚本使用Multiway注册,update_posegraph_for_scene为用于Multiway注册的所有片段建立了一个位姿图。每一个图节点表示了一个片段,其位姿表示的是将其转到全局空间的位姿。

一旦一个位姿图被创建,将执行optimize_posegraph_for_fragment,为了估计RGBD图像的位姿。

# examples/python/reconstruction_system/optimize_posegraph.py
def optimize_posegraph_for_fragment(path_dataset, fragment_id, config):
    pose_graph_name = join(path_dataset,
                           config["template_fragment_posegraph"] % fragment_id)
    pose_graph_optimized_name = join(
        path_dataset,
        config["template_fragment_posegraph_optimized"] % fragment_id)
    run_posegraph_optimization(pose_graph_name, pose_graph_optimized_name,
            max_correspondence_distance = config["max_depth_diff"],
            preference_loop_closure = \
            config["preference_loop_closure_odometry"])

3.6 注册主循环

下面的函数make_posegraph_for_scene调用了上面介绍的所有函数,其主要工作流程:pair global registration->multiway registration

# examples/python/reconstruction_system/register_fragments.py
def make_posegraph_for_scene(ply_file_names, config):
    pose_graph = o3d.pipelines.registration.PoseGraph()
    odometry = np.identity(4)
    pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(odometry))

    n_files = len(ply_file_names)
    matching_results = { 
   }
    for s in range(n_files):
        for t in range(s + 1, n_files):
            matching_results[s * n_files + t] = matching_result(s, t)

    if config["python_multi_threading"] == True:
        from joblib import Parallel, delayed
        import multiprocessing
        import subprocess
        MAX_THREAD = min(multiprocessing.cpu_count(),
                         max(len(matching_results), 1))
        results = Parallel(n_jobs=MAX_THREAD)(delayed(
            register_point_cloud_pair)(ply_file_names, matching_results[r].s,
                                       matching_results[r].t, config)
                                              for r in matching_results)
        for i, r in enumerate(matching_results):
            matching_results[r].success = results[i][0]
            matching_results[r].transformation = results[i][1]
            matching_results[r].information = results[i][2]
    else:
        for r in matching_results:
            (matching_results[r].success, matching_results[r].transformation,
                    matching_results[r].information) = \
                    register_point_cloud_pair(ply_file_names,
                    matching_results[r].s, matching_results[r].t, config)

    for r in matching_results:
        if matching_results[r].success:
            (odometry, pose_graph) = update_posegraph_for_scene(
                matching_results[r].s, matching_results[r].t,
                matching_results[r].transformation,
                matching_results[r].information, odometry, pose_graph)
    o3d.io.write_pose_graph(
        join(config["path_dataset"], config["template_global_posegraph"]),
        pose_graph)

3.7 结果

4 精细配准

4.1 输入

脚本运行python run_system.py [config] --refine。在[config]["path_dataset"]对应的文件夹下应该有子文件夹fragments,其中保存.ply.json文件

主要运行函数 local_refinementoptimize_posegraph_for_scene。第一个函数对片段对进行注册;第二个函数执行多路注册。

4.2 Fine-grained 注册

# examples/python/reconstruction_system/refine_registration.py
def multiscale_icp(source,
                   target,
                   voxel_size,
                   max_iter,
                   config,
                   init_transformation=np.identity(4)):
    current_transformation = init_transformation
    for i, scale in enumerate(range(len(max_iter))):  # multi-scale approach
        iter = max_iter[scale]
        distance_threshold = config["voxel_size"] * 1.4
        print("voxel_size {}".format(voxel_size[scale]))
        source_down = source.voxel_down_sample(voxel_size[scale])
        target_down = target.voxel_down_sample(voxel_size[scale])
        if config["icp_method"] == "point_to_point":
            result_icp = o3d.pipelines.registration.registration_icp(
                source_down, target_down, distance_threshold,
                current_transformation,
                o3d.pipelines.registration.TransformationEstimationPointToPoint(
                ),
                o3d.pipelines.registration.ICPConvergenceCriteria(
                    max_iteration=iter))
        else:
            source_down.estimate_normals(
                o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
                                                     2.0,
                                                     max_nn=30))
            target_down.estimate_normals(
                o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
                                                     2.0,
                                                     max_nn=30))
            if config["icp_method"] == "point_to_plane":
                result_icp = o3d.pipelines.registration.registration_icp(
                    source_down, target_down, distance_threshold,
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationPointToPlane(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        max_iteration=iter))
            if config["icp_method"] == "color":
                result_icp = o3d.pipelines.registration.registration_colored_icp(
                    source_down, target_down, distance_threshold,
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationForColoredICP(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        relative_fitness=1e-6,
                        relative_rmse=1e-6,
                        max_iteration=iter))
            if config["icp_method"] == "generalized":
                result_icp = o3d.pipelines.registration.registration_generalized_icp(
                    source_down, target_down, distance_threshold,
                    current_transformation,
                    o3d.pipelines.registration.
                    TransformationEstimationForGeneralizedICP(),
                    o3d.pipelines.registration.ICPConvergenceCriteria(
                        relative_fitness=1e-6,
                        relative_rmse=1e-6,
                        max_iteration=iter))
        current_transformation = result_icp.transformation
        if i == len(max_iter) - 1:
            information_matrix = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
                source_down, target_down, voxel_size[scale] * 1.4,
                result_icp.transformation)

    return (result_icp.transformation, information_matrix)

为精细注册提供了两个选项,即ico_method使用color效果更好

4.3 Multiway注册(同3.5)

4.4 注册主循环

# examples/python/reconstruction_system/refine_registration.py
def make_posegraph_for_refined_scene(ply_file_names, config):
    pose_graph = o3d.io.read_pose_graph(
        join(config["path_dataset"],
             config["template_global_posegraph_optimized"]))

    n_files = len(ply_file_names)
    matching_results = { 
   }
    for edge in pose_graph.edges:
        s = edge.source_node_id
        t = edge.target_node_id

        transformation_init = edge.transformation
        matching_results[s * n_files + t] = \
            matching_result(s, t, transformation_init)

    if config["python_multi_threading"] == True:
        from joblib import Parallel, delayed
        import multiprocessing
        import subprocess
        MAX_THREAD = min(multiprocessing.cpu_count(),
                         max(len(pose_graph.edges), 1))
        results = Parallel(n_jobs=MAX_THREAD)(
            delayed(register_point_cloud_pair)(
                ply_file_names, matching_results[r].s, matching_results[r].t,
                matching_results[r].transformation, config)
            for r in matching_results)
        for i, r in enumerate(matching_results):
            matching_results[r].transformation = results[i][0]
            matching_results[r].information = results[i][1]
    else:
        for r in matching_results:
            (matching_results[r].transformation,
                    matching_results[r].information) = \
                    register_point_cloud_pair(ply_file_names,
                    matching_results[r].s, matching_results[r].t,
                    matching_results[r].transformation, config)

    pose_graph_new = o3d.pipelines.registration.PoseGraph()
    odometry = np.identity(4)
    pose_graph_new.nodes.append(
        o3d.pipelines.registration.PoseGraphNode(odometry))
    for r in matching_results:
        (odometry, pose_graph_new) = update_posegraph_for_scene(
            matching_results[r].s, matching_results[r].t,
            matching_results[r].transformation, matching_results[r].information,
            odometry, pose_graph_new)
    print(pose_graph_new)

主要流程: pairwise local refinement -> multiway registration.

4.5 结果

5 集成场景

系统的最后一步是将RGBD图像集合成一个TSDF列表,并提取出mesh结果

5.1 输入

运行脚本python run_system.py [config] --integrate。在[config]中, ["path_dataset"]对应的子文件夹中应有帧对齐的imagedepth

5.2 集成RGBD框架

# examples/python/reconstruction_system/integrate_scene.py
def scalable_integrate_rgb_frames(path_dataset, intrinsic, config):
    poses = []
    [color_files, depth_files] = get_rgbd_file_lists(path_dataset)
    n_files = len(color_files)
    n_fragments = int(math.ceil(float(n_files) / \
            config['n_frames_per_fragment']))
    volume = o3d.pipelines.integration.ScalableTSDFVolume(
        voxel_length=config["tsdf_cubic_size"] / 512.0,
        sdf_trunc=0.04,
        color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8)

    pose_graph_fragment = o3d.io.read_pose_graph(
        join(path_dataset, config["template_refined_posegraph_optimized"]))

    for fragment_id in range(len(pose_graph_fragment.nodes)):
        pose_graph_rgbd = o3d.io.read_pose_graph(
            join(path_dataset,
                 config["template_fragment_posegraph_optimized"] % fragment_id))

        for frame_id in range(len(pose_graph_rgbd.nodes)):
            frame_id_abs = fragment_id * \
                    config['n_frames_per_fragment'] + frame_id
            print(
                "Fragment %03d / %03d :: integrate rgbd frame %d (%d of %d)." %
                (fragment_id, n_fragments - 1, frame_id_abs, frame_id + 1,
                 len(pose_graph_rgbd.nodes)))
            rgbd = read_rgbd_image(color_files[frame_id_abs],
                                   depth_files[frame_id_abs], False, config)
            pose = np.dot(pose_graph_fragment.nodes[fragment_id].pose,
                          pose_graph_rgbd.nodes[frame_id].pose)
            volume.integrate(rgbd, intrinsic, np.linalg.inv(pose))
            poses.append(pose)

    mesh = volume.extract_triangle_mesh()
    mesh.compute_vertex_normals()
    if config["debug_mode"]:
        o3d.visualization.draw_geometries([mesh])

该函数首先对制作片段和注册片段读取对齐结果,然后计算全局空间中每个RGBD图像的位姿。之后,使用RGBD积分对RGBD图像进行积分。

5.3输出

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192927.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(3)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号