arrayqueue源码_thinkphp源码分析

arrayqueue源码_thinkphp源码分析愉快地聊一聊ArrayDeque的特点吧~(以下都是基于jdk1.8)一棵树ArrayDeque的继承树如下图:基本特点(1)双端队列,可从两端添加、删除元素。作为队列使用时,性能优于LinkedList。作为栈使用时,性能优于Stack。(2)底层使用可变数组Object[]elements,数组容量按需增长(3)不能存储null(4)支持双向迭代器遍历(5)线程不安全…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

愉快地聊一聊ArrayDeque的特点吧~(以下都是基于jdk1.8)

一棵树

ArrayDeque的继承树如下图:
在这里插入图片描述

基本特点

(1)双端队列,可从两端添加、删除元素。作为队列使用时,性能优于LinkedList。作为栈使用时,性能优于Stack。

(2)底层使用可变数组Object[] elements, 数组容量按需增长

(3)不能存储null

(4)支持双向迭代器遍历

(5)线程不安全

(6)fail-fast机制。

(7)最小数组容量MIN_INITIAL_CAPACITY = 8。Must be a power of 2

(8)默认数组初始容量是16

(9)调用指定初始容量的构造函数,并不会按照指定值分配容量。

(10)先添加,再判断是否需要扩容

源码之旅

这里只取部分源码进行分析:指定初始容量的构造函数、扩容机制,以及主要方法。

好了,先把类中定义的变量熟悉一下:

	 /** * The array in which the elements of the deque are stored. * The capacity of the deque is the length of this array, which is * always a power of two. The array is never allowed to become * full, except transiently within an addX method where it is * resized (see doubleCapacity) immediately upon becoming full, * thus avoiding head and tail wrapping around to equal each * other. We also guarantee that all array cells not holding * deque elements are always null. */
    transient Object[] elements; // non-private to simplify nested class access

    /** * The index of the element at the head of the deque (which is the * element that would be removed by remove() or pop()); or an * arbitrary number equal to tail if the deque is empty. */
    transient int head;

    /** * The index at which the next element would be added to the tail * of the deque (via addLast(E), add(E), or push(E)). */
    transient int tail;

    /** * The minimum capacity that we'll use for a newly created deque. * Must be a power of 2. */
    private static final int MIN_INITIAL_CAPACITY = 8;

(1)指定初始容量的构造函数:

找到该构造函数,从此入手:

    /** * Constructs an empty array deque with an initial capacity * sufficient to hold the specified number of elements. * * @param numElements lower bound on initial capacity of the deque */
    public ArrayDeque(int numElements) { 
   
        allocateElements(numElements);
    }

再看allocateElements方法:

    /** * Allocates empty array to hold the given number of elements. * * @param numElements the number of elements to hold */
    private void allocateElements(int numElements) { 
   
        int initialCapacity = MIN_INITIAL_CAPACITY;
        // Find the best power of two to hold elements.
        // Tests "<=" because arrays aren't kept full.
        if (numElements >= initialCapacity) { 
   
            initialCapacity = numElements;
            initialCapacity |= (initialCapacity >>>  1);
            initialCapacity |= (initialCapacity >>>  2);
            initialCapacity |= (initialCapacity >>>  4);
            initialCapacity |= (initialCapacity >>>  8);
            initialCapacity |= (initialCapacity >>> 16);
            initialCapacity++;

            if (initialCapacity < 0)   // Too many elements, must back off
                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
        }
        elements = new Object[initialCapacity];
    }

拿给定元素数量与数组最小容量8做比较,因为此集合不允许数组变满(添加元素的方法中,数组容量一满就立刻扩容),所以当给定元素数量>=数组最小容量8时,会进行一系列的无符号右移运算、或运算,以便找到能够容纳给定元素的最佳的2的幂次方。

这个最佳的2的幂次方就是调用该构造函数后底层为我们分配的数组容量。

(2)扩容机制:

找到扩容的核心方法:

    /** * Doubles the capacity of this deque. Call only when full, i.e., * when head and tail have wrapped around to become equal. */
    private void doubleCapacity() { 
   
    	//断言 判断head与tail指针是否相等
        assert head == tail;
        int p = head;
        int n = elements.length;
        int r = n - p; // number of elements to the right of p
        //左移1位,相当于*2操作,只是<<效率要高于*运算。
        int newCapacity = n << 1;
        if (newCapacity < 0)
            throw new IllegalStateException("Sorry, deque too big");
        //扩容,实际上是定义了一个指定容量的数组,将elements数组中的元素复制到新数组a中。
        Object[] a = new Object[newCapacity];
        System.arraycopy(elements, p, a, 0, r);
        System.arraycopy(elements, 0, a, r, p);
        //重新设置head和tail的指针
        elements = a;
        head = 0;
        tail = n;
    }

(3)主要方法:

添加元素:

    // The main insertion and extraction methods are addFirst,
    // addLast, pollFirst, pollLast. The other methods are defined in
    // terms of these.

    /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @throws NullPointerException if the specified element is null */
    public void addFirst(E e) { 
   
        if (e == null)
            throw new NullPointerException();
        //此运算可以快速定位到要插入的位置,实际上是从数组最右侧开始插入的,head是递减的
        elements[head = (head - 1) & (elements.length - 1)] = e;
        //head与tail重叠时,开始扩容
        if (head == tail)
            doubleCapacity();
    }
    
     /** * Inserts the specified element at the end of this deque. * * <p>This method is equivalent to {@link #add}. * * @param e the element to add * @throws NullPointerException if the specified element is null */
    public void addLast(E e) { 
   
        if (e == null)
            throw new NullPointerException();
        //tail初始值是0,指向待插入元素的位置,tail是递增的
        elements[tail] = e;
        //先插入元素,再判断是否需要扩容。
        //tail + 1 & (elements.length - 1 )用于定位下一个待插入元素的位置。
        //如果tail与head重叠,数组容量已满,
        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
            doubleCapacity();
    }
     
     /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerFirst}) * @throws NullPointerException if the specified element is null */
    public boolean offerFirst(E e) { 
   
        addFirst(e);
        return true;
    }

    /** * Inserts the specified element at the end of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerLast}) * @throws NullPointerException if the specified element is null */
    public boolean offerLast(E e) { 
   
        addLast(e);
        return true;
    }

删除首尾元素:

    public E removeFirst() { 
   
        E x = pollFirst();
        if (x == null)
            throw new NoSuchElementException();
        return x;
    }
    
    public E removeLast() { 
   
        E x = pollLast();
        if (x == null)
            throw new NoSuchElementException();
        return x;
    }

    public E pollFirst() { 
   
        int h = head;
        @SuppressWarnings("unchecked")
        E result = (E) elements[h];
        // Element is null if deque empty
        if (result == null)
            return null;
        elements[h] = null;     // Must null out slot
        head = (h + 1) & (elements.length - 1);
        return result;
    }

    public E pollLast() { 
   
        int t = (tail - 1) & (elements.length - 1);
        @SuppressWarnings("unchecked")
        E result = (E) elements[t];
        if (result == null)
            return null;
        elements[t] = null;
        tail = t;
        return result;
    }

删除指定元素:

	/** * Removes the first occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */
public boolean removeFirstOccurrence(Object o) { 

if (o == null)
return false;
int mask = elements.length - 1;
int i = head;
Object x;
while ( (x = elements[i]) != null) { 

if (o.equals(x)) { 

delete(i);
return true;
}
i = (i + 1) & mask;
}
return false;
}
/** * Removes the last occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the last element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */
public boolean removeLastOccurrence(Object o) { 

if (o == null)
return false;
int mask = elements.length - 1;
int i = (tail - 1) & mask;
Object x;
while ( (x = elements[i]) != null) { 

if (o.equals(x)) { 

delete(i);
return true;
}
i = (i - 1) & mask;
}
return false;
}
private void checkInvariants() { 

assert elements[tail] == null;
assert head == tail ? elements[head] == null :
(elements[head] != null &&
elements[(tail - 1) & (elements.length - 1)] != null);
assert elements[(head - 1) & (elements.length - 1)] == null;
}
/** * Removes the element at the specified position in the elements array, * adjusting head and tail as necessary. This can result in motion of * elements backwards or forwards in the array. * * <p>This method is called delete rather than remove to emphasize * that its semantics differ from those of {@link List#remove(int)}. * * @return true if elements moved backwards */
private boolean delete(int i) { 

checkInvariants();
final Object[] elements = this.elements;
final int mask = elements.length - 1;
final int h = head;
final int t = tail;
final int front = (i - h) & mask;
final int back  = (t - i) & mask;
// Invariant: head <= i < tail mod circularity
if (front >= ((t - h) & mask))
throw new ConcurrentModificationException();
// Optimize for least element motion
if (front < back) { 

if (h <= i) { 

System.arraycopy(elements, h, elements, h + 1, front);
} else { 
 // Wrap around
System.arraycopy(elements, 0, elements, 1, i);
elements[0] = elements[mask];
System.arraycopy(elements, h, elements, h + 1, mask - h);
}
elements[h] = null;
head = (h + 1) & mask;
return false;
} else { 

if (i < t) { 
 // Copy the null tail as well
System.arraycopy(elements, i + 1, elements, i, back);
tail = t - 1;
} else { 
 // Wrap around
System.arraycopy(elements, i + 1, elements, i, mask - i);
elements[mask] = elements[0];
System.arraycopy(elements, 1, elements, 0, t);
tail = (t - 1) & mask;
}
return true;
}
}

暂时先写到这里了~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/191478.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 2019-10-30-C#-dotnet-core-局域网组播方法「建议收藏」

    2019-10-30-C#-dotnet-core-局域网组播方法「建议收藏」titleauthordateCreateTimecategoriesC#dotnetcore局域网组播方法lindexi2019-10-309:0:48+08002019-10-2912:2:46+0800dotnetC#我在微软官网找到了用…

  • linux设备驱动程序开发详解_设备驱动程序安装失败

    linux设备驱动程序开发详解_设备驱动程序安装失败

  • 回溯法之n皇后问题总结_用回溯法求解n皇后问题的思路

    回溯法之n皇后问题总结_用回溯法求解n皇后问题的思路一、问题在nxn格的棋盘上放置彼此不受攻击的n格皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在nxn格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。二、算法与分析用数组x[i](1≤i≤n)表示n后问题的解。其中x[i]表示皇后i放在棋盘的第i行的第x[i]列。由于不允许将2个皇后放在同一列,所以解向量中的x[i]…

  • ModelSim安装破解出现Unable to checkout a license.Make sure you licence file…..错误

    ModelSim安装破解出现Unable to checkout a license.Make sure you licence file…..错误说了你们可能不信,装ModelSim软件,今天整整装了一天才弄好,一直出现下面的错误。下面详细说一下解决这个问题的办法:方法一:不正面解决这个问题在FPGA做仿真的时候,可以不需要单独破解版的ModelSim,直接使用Quartus软件自带的ModelSim-Altrea安装上面两个软件,然后在仿真的时候,路径设置对就可以这个时候,你安装的ModelSim在桌面的图标你可以发现是叫ModelSim-Altrea方法二:正面解决这个问题如果你跟我一样,非要安装独立的版本,当你遇到这个问题的

  • linux复制文件夹及赋予权限

    1.cp命令命令:cpdir1/a.docdir2表示将dir1下的a.doc文件复制到dir2目录下cp-rdir1dir2表示将dir1及其dir1下所包含的文件复制到dir2下cp-rdir1/.dir2表示将dir1下的文件复制到dir2,不包括dir1目录说明:cp参数-i:询问,如果目标文件已经存在,则会询问是否覆盖;2.scp命令例如:scpid_rsa.pubrouter_17@IP:/home/router_17/.ssh/authori…

  • java+opencv_opencv使用教程

    java+opencv_opencv使用教程opencv简介OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法(百度百科)。opencv安装Windows1.到OpenCV官网下…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号