测试数据增强_预测模型最佳cutoff值

测试数据增强_预测模型最佳cutoff值cutout是2017年提出的一种数据增强方法,想法比较简单,即在训练时随机裁剪掉图像的一部分,也可以看作是一种类似dropout的正则化方法。ImprovedRegularizationofConvolutionalNeuralNetworkswithCutoutpaper:https://arxiv.org/pdf/1708.04552.pdfcode:https://github.com/uoguelph-mlrg/Cutoutcutout采用的操作是随机裁剪掉图像中..

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

cutout是2017年提出的一种数据增强方法,想法比较简单,即在训练时随机裁剪掉图像的一部分,也可以看作是一种类似dropout的正则化方法。

Improved Regularization of Convolutional Neural Networks with Cutout

paper: https://arxiv.org/pdf/1708.04552.pdf

code: https://github.com/uoguelph-mlrg/Cutout


cutout采用的操作是随机裁剪掉图像中的一块正方形区域,并在原图中补0。由于作者在cutout早期版本中使用了不规则大小区域的方式,但是对比发现,固定大小区域能达到同等的效果,因此就没必要这么麻烦去生成不规则区域了。

实现代码比较简单,cutout.py,如下:

import torch
import numpy as np


class Cutout(object):
    """Randomly mask out one or more patches from an image.

    Args:
        n_holes (int): Number of patches to cut out of each image.
        length (int): The length (in pixels) of each square patch.
    """
    def __init__(self, n_holes=1, length=16):
        self.n_holes = n_holes
        self.length = length

    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W).
        Returns:
            Tensor: Image with n_holes of dimension length x length cut out of it.
        """
        h = img.size(1)
        w = img.size(2)

        mask = np.ones((h, w), np.float32)

        for n in range(self.n_holes):
            y = np.random.randint(h)
            x = np.random.randint(w)

            y1 = np.clip(y - self.length // 2, 0, h)
            y2 = np.clip(y + self.length // 2, 0, h)
            x1 = np.clip(x - self.length // 2, 0, w)
            x2 = np.clip(x + self.length // 2, 0, w)

            mask[y1: y2, x1: x2] = 0.

        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img = img * mask

        return img

上面代码中有两个参数,具体如下:

n_holes:表示裁剪掉的图像块的数目,默认都是设置为1;

length:每个正方形块的边长,作者经过多轮尝试后,不同数据集最优设置不同,CIFAR10为16,CIFAR100为8,SVHN为20;# 这里觉得挺麻烦的,cutout调参很重要

看看在图像上cutout是什么效果,代码如下:

import cv2
from torchvision import transforms
from cutout import Cutout

# 执行cutout
img = cv2.imread('cat.png')
img = transforms.ToTensor()(img)
cut = Cutout(length=100)
img = cut(img)

# cutout图像写入本地
img = img.mul(255).byte()
img = img.numpy().transpose((1, 2, 0))
cv2.imwrite('cutout.png', img)

由于原图比较大,这里把正方形边长调到了100,效果如下:

测试数据增强_预测模型最佳cutoff值


实际训练看看效果到底怎么样,为了保证公平,训练时参数统一,且每种模型训练了8次以减少随机性,结果见下表。

Method CIFAR-10 CIFAR-100
ResNet-50 96.76/96.82/96.81/96.79
96.72/96.69/96.60/96.82
(96.75)
83.80/83.66/84.19/83.26
83.89/83.90/83.57/83.69
(83.74)
ResNet-50+cutout 96.73/96.58/96.78/96.65
96.65/96.58/96.77/96.65
(96.67)
83.63/83.78/83.80/83.49
83.92/83.57/83.71/83.60
(83.69)

从实验结果来看,在CIFAR10和CIFAR100这两个数据集上使用cutout,训练出来的模型精度都会掉一点。看来cutout涨点并没有那么容易,和调参、模型深度、数据集都有很大的关系。


数据增强实测之Random Erasing_一个菜鸟的奋斗-CSDN博客

数据增强实测之mixup_一个菜鸟的奋斗-CSDN博客

数据增强实测之RICAP_一个菜鸟的奋斗-CSDN博客

数据增强实测之GridMask_一个菜鸟的奋斗-CSDN博客

数据增强实测之Hide-and-Seek_一个菜鸟的奋斗-CSDN博客

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/189662.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • matlab二元函数求极值例题_matlab求二元函数最大值

    matlab二元函数求极值例题_matlab求二元函数最大值MATLAB一元函数与二元函数求极小值

  • GenshinPlayerQuery_qeriuwjhrf

    GenshinPlayerQuery_qeriuwjhrf百度百科:https://baike.baidu.com/item/qeephp/8328612?fr=aladdin 官方地址:http://www.qeephp.cn/app/index.php 下载地址:https://github.com/firzen/QeePHP 文档快速入门:http://qeephp.cn/docs/qeephp-quic…

    2022年10月31日
  • SQL2008安装教程

    SQL2008安装教程1、首先,在安装文件setup.exe上,单击鼠标右键选择”以管理员的身份运行”,如下图所示:2、首先单击安装光盘中的setup.exe安装文件,打开如下所示的”SQLServer安装中心”对话框:3、选择左边的安装选项,单击右边的”全新SQLServer独立安装或向现有安装添加功能”选项,如图所示:4、在打开的”SQLServer2

  • 情感分析语料库——情感词典(中文英文)转[通俗易懂]

    情感分析语料库——情感词典(中文英文)转[通俗易懂]情感分析资源(转)中文的http://wenku.baidu.com/view/819b90d676eeaeaad1f3306e.html情感词典1.知网的情感词典-http://www.keenage.com/html/c_bulletin_2007.htm由知网发布的词典,包括中文情感词典和英文情感词典(以下需要论坛积分)2.台湾大学的情感极性词典-http:/…

  • 地理加权回归模型_arcgis栅格数据归一化0到1

    地理加权回归模型_arcgis栅格数据归一化0到1(再次接近6000字,诚意满满啊)从这一章开始进入实际操作环节……首先还是用ArcGIS,毕竟这个东西比较容易。实际上要说起来,GWR有专门的软件,叫做GWR,但是这个软件暂时我还没有用过,所以等我先学习一下,把他放到最后才说了,先用比较熟悉的,比如ArcGIS、比如R语言,这些来讲讲(还有一个我非常熟悉的软件是GEODA,可惜GEODA仅支持回归分析,不支持地理加权回归)。

  • 精美网站赏析_怎么收藏网址到收藏夹

    精美网站赏析_怎么收藏网址到收藏夹英文网站1链接地址享笑网个人博客交流网站蓝色网站商城黑色网站后台管理系统橙色企业信息管理系统韩国情侣酒店网站模板bootstrap制作的企业后台模板个人空间网站黑色主题网页

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号