深度卷积网络_卷积神经网络输出大小

深度卷积网络_卷积神经网络输出大小在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,比如最近的GoogLenet,VGG-19,Incepetion等模型。CNN史上的一个里程碑事件是ResNet模型的出现,ResNet可以训练出更深的CNN模型,从而实现更高的准确度。ResNet模型的核心是通过建立前面层与后面层之间的“短路连接”(shortcuts,skipconnection),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。今天我们要介绍的是DenseNet(Denselyconnectedcon

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

前言

在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,比如最近的GoogLenet,VGG-19,Incepetion等模型。CNN史上的一个里程碑事件是ResNet模型的出现,ResNet可以训练出更深的CNN模型,从而实现更高的准确度。ResNet模型的核心是通过建立前面层与后面层之间的“短路连接”(shortcuts,skip connection),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。今天我们要介绍的是 DenseNet(Densely connected convolutional networks) 模型,它的基本思路与ResNet一致,但是它建立的是前面所有层与后面层的密集连接(dense connection),它的名称也是由此而来。DenseNet的另一大特色是通过特征在channel上的连接来实现特征重用(feature reuse)。这些特点让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能,DenseNet也因此斩获CVPR 2017的最佳论文奖。本篇文章首先介绍DenseNet的原理以及网路架构,然后讲解DenseNet在Pytorch上的实现。


深度卷积网络_卷积神经网络输出大小

设计理念

相比ResNet,DenseNet提出了一个更激进的密集连接机制:即互相连接所有的层,具体来说就是每个层都会接受其前面所有层作为其额外的输入。图1为ResNet网络的连接机制,作为对比,图2为DenseNet的密集连接机制。可以看到,ResNet是每个层与前面的某层(一般是2~3层)短路连接在一起,连接方式是通过元素级相加。而在DenseNet中,每个层都会与前面所有层在channel维度上连接(concat)在一起(这里各个层的特征图大小是相同的,后面会有说明),并作为下一层的输入。对于一个 L L L 层的网络,DenseNet共包含 L ( L + 1 ) 2 \frac{L(L+1)}{2} 2L(L+1)个连接,相比ResNet,这是一种密集连接。而且DenseNet是直接concat来自不同层的特征图,这可以实现特征重用,提升效率,这一特点是DenseNet与ResNet最主要的区别。


深度卷积网络_卷积神经网络输出大小


ResNet网络的短路连接机制(其中+代表的是元素级相加操作)


深度卷积网络_卷积神经网络输出大小


DenseNet网络的密集连接机制(其中c代表的是channel级连接操作)

如果用公式表示的话,传统的网络在 l l l层的输出为:
x l = H l ( x l − 1 ) x_l = H_l(x_{l-1}) xl=Hl(xl1)

而对于ResNet,增加了来自上一层输入的identity函数:

x l = H l ( x l − 1 ) + x l − 1 x_l = H_l(x_{l-1})+x_{l-1} xl=Hl(xl1)+xl1

在DenseNet中,会连接前面所有层作为输入:

x l = H l ( [ x 0 , x 1 , . . . , x l − 1 ] ) x_l = H_l([x_0,x_1,…,x_{l-1}]) xl=Hl([x0,x1,...,xl1])

其中,上面的 H l ( ⋅ ) H_l(·) Hl()代表是非线性转化函数(non-liear transformation),它是一个组合操作,其可能包括一系列的BN(Batch Normalization),ReLU,Pooling及Conv操作。注意这里 l l l层与 l − 1 l-1 l1层之间可能实际上包含多个卷积层。

DenseNet的前向过程如图所示,可以更直观地理解其密集连接方式,比如 h 3 h_3 h3 的输入不仅包括来自 h 2 h_2 h2 x 2 x_2 x2,还包括前面两层的 x 1 x_1 x1 x 2 x_2 x2 ,它们是在channel维度上连接在一起的。


深度卷积网络_卷积神经网络输出大小


DenseNet的前向过程

CNN网络一般要经过Pooling或者stride>1的Conv来降低特征图的大小,而DenseNet的密集连接方式需要特征图大小保持一致。为了解决这个问题,DenseNet网络中使用DenseBlock+Transition的结构,其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。而Transition模块是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。图4给出了DenseNet的网路结构,它共包含4个DenseBlock,各个DenseBlock之间通过Transition连接在一起。


深度卷积网络_卷积神经网络输出大小


使用DenseBlock+Transition的DenseNet网络

网络结构

如前所示,DenseNet的网络结构主要由DenseBlockTransition组成,如图所示。下面具体介绍网络的具体实现细节。


深度卷积网络_卷积神经网络输出大小

在DenseBlock中,各个层的特征图大小一致,可以在channel维度上连接。DenseBlock中的非线性组合函数 H ( ⋅ ) H(·) H()采用的是BN+ReLU+3×3 Conv的结构,如图所示。另外值得注意的一点是,与ResNet不同,所有DenseBlock中各个层卷积之后均输出 k k k个特征图,即得到的特征图的channel数为 k k k,或者说采用 k k k个卷积核。 k k k 在DenseNet称为growth rate,这是一个超参数。一般情况下使用较小的 k k k(比如12),就可以得到较佳的性能。假定输入层的特征图的channel数为 k 0 k_0 k0,那么 l l l层输入的channel数为 k 0 + k ( l − 1 ) k_0 + k(l-1) k0+k(l1),因此随着层数增加,尽管 k k k 设定得较小,DenseBlock的输入会非常多,不过这是由于特征重用所造成的,每个层仅有 k k k个特征是自己独有的。


深度卷积网络_卷积神经网络输出大小


DenseBlock中的非线性转换结构

由于后面层的输入会非常大,DenseBlock内部可以采用bottleneck层来减少计算量,主要是原有的结构中增加1×1 Conv,如图所示,即BN+ReLU+1×1 Conv+BN+ReLU+3×3 Conv,称为DenseNet-B结构。其中1×1 Conv得到 4 k 4k 4k 个特征图它起到的作用是降低特征数量,从而提升计算效率。


深度卷积网络_卷积神经网络输出大小


使用bottleneck层的DenseBlock结构

对于Transition层,它主要是连接两个相邻的DenseBlock,并且降低特征图大小。Transition层包括一个1×1的卷积和2×2的AvgPooling,结构为BN+ReLU+1×1 Conv+2×2 AvgPooling。另外,Transition层可以起到压缩模型的作用。假定Transition的上接DenseBlock得到的特征图channels数为 m m m ,Transition层可以产生 θ m θm θm个特征(通过卷积层),其中 θ ∈ ( 0 , 1 ] θ∈(0,1] θ(0,1] 是压缩系数(compression rate)。当 θ = 1 θ=1 θ=1 时,特征个数经过Transition层没有变化,即无压缩,而当压缩系数小于1时,这种结构称为DenseNet-C,文中使用 θ = 0.5 θ = 0.5 θ=0.5。对于使用bottleneck层的DenseBlock结构和压缩系数小于1的Transition组合结构称为DenseNet-BC。

DenseNet共在三个图像分类数据集(CIFAR,SVHN和ImageNet)上进行测试。对于前两个数据集,其输入图片大小为 32 × 32 32×32 32×32 ,所使用的DenseNet在进入第一个DenseBlock之前,首先进行进行一次3×3卷积(stride=1),卷积核数为16(对于DenseNet-BC为 2 k 2k 2k)。DenseNet共包含三个DenseBlock,各个模块的特征图大小分别为 32 × 32 32×32 32×32 16 × 16 16×16 16×16 8 × 8 8×8 8×8,每个DenseBlock里面的层数相同。最后的DenseBlock之后是一个global AvgPooling层,然后送入一个softmax分类器。注意,在DenseNet中,所有的3×3卷积均采用padding=1的方式以保证特征图大小维持不变。对于基本的DenseNet,使用如下三种网络配置: { L = 40 , k = 12 } \{L=40,k=12\} {
L=
40,k=12}
, { L = 100 , k = 12 } \{L=100,k=12\} {
L=
100,k=12}
{ L = 40 , k = 24 } \{L=40,k=24\} {
L=
40,k=24}
。而对于DenseNet-BC结构,使用如下三种网络配置: { L = 100 , k = 12 } \{L=100,k=12\} {
L=
100,k=12}
, { L = 250 , k = 24 } \{L=250,k=24\} {
L=
250,k=24}
{ L = 190 , k = 40 } \{L=190,k=40\} {
L=
190,k=40}
。这里的 L L L 指的是网络总层数(网络深度),一般情况下,我们只把带有训练参数的层算入其中,而像Pooling这样的无参数层不纳入统计中,此外BN层尽管包含参数但是也不单独统计,而是可以计入它所附属的卷积层。对于普通的 L = 40 , k = 12 L=40,k=12 L=40,k=12网络,除去第一个卷积层、2个Transition中卷积层以及最后的Linear层,共剩余36层,均分到三个DenseBlock可知每个DenseBlock包含12层。其它的网络配置同样可以算出各个DenseBlock所含层数。

对于ImageNet数据集,图片输入大小为 224 × 224 224×224 224×224 ,网络结构采用包含4个DenseBlock的DenseNet-BC,其首先是一个stride=2的7×7卷积层(卷积核数为 2 k 2k 2k ),然后是一个stride=2的3×3 MaxPooling层,后面才进入DenseBlock。ImageNet数据集所采用的网络配置如表1所示:


深度卷积网络_卷积神经网络输出大小


ImageNet数据集上所采用的DenseNet结构

实验结果及讨论

这里给出DenseNet在CIFAR-100和ImageNet数据集上与ResNet的对比结果,如下图所示。从图1中可以看到,只有0.8M的DenseNet-100性能已经超越ResNet-1001,并且后者参数大小为10.2M。而从图2中可以看出,同等参数大小时,DenseNet也优于ResNet网络。其它实验结果见原论文。


深度卷积网络_卷积神经网络输出大小


在CIFAR-100数据集上ResNet vs DenseNet




深度卷积网络_卷积神经网络输出大小


在ImageNet数据集上ResNet vs DenseNet

综合来看,DenseNet的优势主要体现在以下几个方面:

  • 由于密集连接方式,DenseNet提升了梯度的反向传播,使得网络更容易训练。由于每层可以直达最后的误差信号,实现了隐式的“deep supervision”
  • 参数更小且计算更高效,这有点违反直觉,由于DenseNet是通过concat特征来实现短路连接,实现了特征重用,并且采用较小的growth rate,每个层所独有的特征图是比较小的;
  • 由于特征复用,最后的分类器使用了低级特征。

要注意的一点是,如果实现方式不当的话,DenseNet可能耗费很多GPU显存,一种高效的实现如图所示,更多细节可以见这篇论文Memory-Efficient Implementation of DenseNets。不过我们下面使用Pytorch框架可以自动实现这种优化。


深度卷积网络_卷积神经网络输出大小


DenseNet的更高效实现方式

使用Pytorch实现DenseNet

这里我们采用Pytorch框架来实现DenseNet,目前它已经支持Windows系统。对于DenseNet,Pytorch在torchvision.models模块里给出了官方实现,这个DenseNet版本是用于ImageNet数据集的DenseNet-BC模型,下面简单介绍实现过程。

首先实现DenseBlock中的内部结构,这里是BN+ReLU+1×1 Conv+BN+ReLU+3×3 Conv结构,最后也加入dropout层以用于训练过程。

class _DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
                                           kernel_size=1, stride=1, bias=False))
        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False))
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)

据此,实现DenseBlock模块,内部是密集连接方式(输入特征数线性增长):

class _DenseBlock(nn.Sequential):
    """DenseBlock"""
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,
                                drop_rate)
            self.add_module("denselayer%d" % (i+1,), layer)

此外,我们实现Transition层,它主要是一个卷积层和一个池化层:

class _Transition(nn.Sequential):
    """Transition layer between two adjacent DenseBlock"""
    def __init__(self, num_input_feature, num_output_features):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(num_input_feature))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(2, stride=2))

最后我们实现DenseNet网络:

class DenseNet(nn.Module):
"DenseNet-BC model"
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
""" :param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper :param block_config: (list of 4 ints) number of layers in each DenseBlock :param num_init_features: (int) number of filters in the first Conv2d :param bn_size: (int) the factor using in the bottleneck layer :param compression_rate: (float) the compression rate used in Transition Layer :param drop_rate: (float) the drop rate after each DenseLayer :param num_classes: (int) number of classes for classification """
super(DenseNet, self).__init__()
# first Conv2d
self.features = nn.Sequential(OrderedDict([
("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
("norm0", nn.BatchNorm2d(num_init_features)),
("relu0", nn.ReLU(inplace=True)),
("pool0", nn.MaxPool2d(3, stride=2, padding=1))
]))
# DenseBlock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
self.features.add_module("denseblock%d" % (i + 1), block)
num_features += num_layers*growth_rate
if i != len(block_config) - 1:
transition = _Transition(num_features, int(num_features*compression_rate))
self.features.add_module("transition%d" % (i + 1), transition)
num_features = int(num_features * compression_rate)
# final bn+ReLU
self.features.add_module("norm5", nn.BatchNorm2d(num_features))
self.features.add_module("relu5", nn.ReLU(inplace=True))
# classification layer
self.classifier = nn.Linear(num_features, num_classes)
# params initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
out = self.classifier(out)
return out

选择不同网络参数,就可以实现不同深度的DenseNet,这里实现DenseNet-121网络,而且Pytorch提供了预训练好的网络参数:

def densenet121(pretrained=False, **kwargs):
"""DenseNet121"""
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet121'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model

下面,我们使用预训练好的网络对图片进行测试,这里给出top-5预测值:

densenet = densenet121(pretrained=True)
densenet.eval()
img = Image.open("./images/cat.jpg")
trans_ops = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
images = trans_ops(img).view(-1, 3, 224, 224)
outputs = densenet(images)
_, predictions = outputs.topk(5, dim=1)
labels = list(map(lambda s: s.strip(), open("./data/imagenet/synset_words.txt").readlines()))
for idx in predictions.numpy()[0]:
print("Predicted labels:", labels[idx])


深度卷积网络_卷积神经网络输出大小

给出的预测结果为:

Predicted labels: n02123159 tiger cat
Predicted labels: n02123045 tabby, tabby cat
Predicted labels: n02127052 lynx, catamount
Predicted labels: n02124075 Egyptian cat
Predicted labels: n02119789 kit fox, Vulpes macrotis

注:完整代码见xiaohu2015/DeepLearning_tutorials

小结

这篇文章详细介绍了DenseNet的设计理念以及网络结构,并给出了如何使用Pytorch来实现。值得注意的是,DenseNet在ResNet基础上前进了一步,相比ResNet具有一定的优势,但是其却并没有像ResNet那么出名(吃显存问题?深度不能太大?)。期待未来有更好的网络模型出现吧!

参考文献

  1. DenseNet-CVPR-Slides.

  2. Densely Connected Convolutional Networks.

本文是搬运,作者写的太好了。DenseNet:比ResNet更优的CNN模型。推荐一波,之前ResNet也是看的他的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/188822.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • linux的USB驱动:gadget

    linux的USB驱动:gadget

  • VS2008安装失败原因!「建议收藏」

    VS2008安装失败原因!「建议收藏」从RTM到现在,我已安装十多回VS2008,发现总会安装OfficeTools的时候,会失败。百思不知其解。后在网上看到,是因为我们使用UltraISO制作激活成功教程的VS2008的时候带出来的问题,主要是Unicode的问题。于是我这个怎么解决呢?我尝试先用deamon打开原版的vs2008,再用untraISO将虚拟盘的所以文件加入新的ISO中,再将激活成功教程的setup.那个文件,加入。重新生成iso

  • 定时任务框架Quartz-(一)Quartz入门与Demo搭建

    一、什么是Quartz什么是Quartz?Quartz是OpenSymphony开源组织在Jobscheduling领域又一个开源项目,完全由Java开发,可以用来执行定时任务,类似于java.util.Timer。但是相较于Timer,Quartz增加了很多功能:持久性作业-就是保持调度定时的状态;作业管理-对调度作业进行有效的管理;…

  • axure菜单展开收起_axure菜单左右滑动

    axure菜单展开收起_axure菜单左右滑动这样可以实现菜单栏最小化,而且在你鼠标不移动到左上角时,小箭头会隐藏,效果就可以了。axure9.0版本在发布后HTML页面打开时总是在顶部弹出菜单既不美观也影响效果。本人axure小白,摸索半天后发现也不能完全关闭或者不显示(除非代码修改);解决方案就是在请求地址后面拼接。…

  • 视频识别分类算法–MASK-RCNN框架[通俗易懂]

    视频识别分类算法–MASK-RCNN框架[通俗易懂]基础内容

  • 图书销售管理系统的可行性研究背景搜集和前提分析

    图书销售管理系统的可行性研究背景搜集和前提分析完成小组成员:大佬(20160401084)DEDRAGON(20160401094)1引言1.1编写目的可行性研究的目的是研究图书管理系统的总体需求、实现方案,并分析开发系统的可行性,为决策者提供是否开发该系统的依据和建议。初拟系统实验报告,对软件开发中将要面临的问题及其解决方案进行初步设计及合理安排。明确开发风险及其所带来的经济效益。1.2背景项目名称:图书…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号