eigen库的使用_vcg库

eigen库的使用_vcg库Eigen矩阵定义#includeMatrixdouble,3,3>A;//Fixedrowsandcols.SameasMatrix3d.Matrixdouble,3,Dynamic>B;//Fixedrows,dynamiccols.Matrixdouble,Dynamic,Dynam

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

Eigen 矩阵定义
复制代码

#include <Eigen/Dense>

Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //

复制代码
 Eigen 基础使用
复制代码

// Basic usage
// Eigen        // Matlab           // comments
x.size()        // length(x)        // vector size
C.rows()        // size(C,1)        // number of rows
C.cols()        // size(C,2)        // number of columns
x(i)            // x(i+1)           // Matlab is 1-based
C(i, j)         // C(i+1,j+1)       //

A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.
                  
A << 1, 2, 3,     // Initialize A. The elements can also be
     4, 5, 6,     // matrices, which are stacked along cols
     7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.

复制代码
Eigen 特殊矩阵生成
复制代码

// Eigen                            // Matlab
MatrixXd::Identity(rows,cols)       // eye(rows,cols)
C.setIdentity(rows,cols)            // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)           // zeros(rows,cols)
C.setZero(rows,cols)                // C = ones(rows,cols)
MatrixXd::Ones(rows,cols)           // ones(rows,cols)
C.setOnes(rows,cols)                // C = ones(rows,cols)
MatrixXd::Random(rows,cols)         // rand(rows,cols)*2-1        // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)              // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high)  // linspace(low,high,size)'
v.setLinSpaced(size,low,high)       // v = linspace(low,high,size)'

复制代码
Eigen 矩阵分块
复制代码

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

复制代码
Eigen 矩阵元素交换

// Of particular note is Eigen's swap function which is highly optimized.
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])

Eigen 矩阵转置
复制代码

// Views, transpose, etc; all read-write except for .adjoint().
// Eigen                           // Matlab
R.adjoint()                        // R'
R.transpose()                      // R.' or conj(R')
R.diagonal()                       // diag(R)
x.asDiagonal()                     // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate()                      // conj(R)

复制代码
Eigen 矩阵乘积
复制代码

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                   R *= Q;          R  = s*P;
                   R += Q;          R *= s;
                   R -= Q;          R /= s;

复制代码
Eigen 矩阵单个元素操作
复制代码

// Vectorized operations on each element independently
// Eigen                  // Matlab
R = P.cwiseProduct(Q);    // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q);   // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s;           // R = R + s
R.array() -= s;           // R = R - s
R.array() < Q.array();    // R < Q
R.array() <= Q.array();   // R <= Q
R.cwiseInverse();         // 1 ./ P
R.array().inverse();      // 1 ./ P
R.array().sin()           // sin(P)
R.array().cos()           // cos(P)
R.array().pow(s)          // P .^ s
R.array().square()        // P .^ 2
R.array().cube()          // P .^ 3
R.cwiseSqrt()             // sqrt(P)
R.array().sqrt()          // sqrt(P)
R.array().exp()           // exp(P)
R.array().log()           // log(P)
R.cwiseMax(P)             // max(R, P)
R.array().max(P.array())  // max(R, P)
R.cwiseMin(P)             // min(R, P)
R.array().min(P.array())  // min(R, P)
R.cwiseAbs()              // abs(P)
R.array().abs()           // abs(P)
R.cwiseAbs2()             // abs(P.^2)
R.array().abs2()          // abs(P.^2)
(R.array() < s).select(P,Q);  // (R < s ? P : Q)

复制代码
Eigen 矩阵化简
复制代码

// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()              // min(R(:))
R.maxCoeff()              // max(R(:))
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()                   // sum(R(:))
R.colwise().sum()         // sum(R)
R.rowwise().sum()         // sum(R, 2) or sum(R')'
R.prod()                  // prod(R(:))
R.colwise().prod()        // prod(R)
R.rowwise().prod()        // prod(R, 2) or prod(R')'
R.trace()                 // trace(R)
R.all()                   // all(R(:))
R.colwise().all()         // all(R)
R.rowwise().all()         // all(R, 2)
R.any()                   // any(R(:))
R.colwise().any()         // any(R)
R.rowwise().any()         // any(R, 2)

复制代码
Eigen 矩阵点乘

// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
x.dot(y)                  // dot(x, y)
x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>

Eigen 矩阵类型转换
复制代码

 Type conversion
// Eigen                           // Matlab
A.cast<double>();                  // double(A)
A.cast<float>();                   // single(A)
A.cast<int>();                     // int32(A)
A.real();                          // real(A)
A.imag();                          // imag(A)
// if the original type equals destination type, no work is done

复制代码
Eigen 求解线性方程组 Ax = b
复制代码

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()

复制代码
Eigen 矩阵特征值
复制代码

// Eigenvalue problems
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)
eig.eigenvectors();               // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

复制代码

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/184810.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 如何自建一个git服务器,搭建Git服务器,真的很简单

    如何自建一个git服务器,搭建Git服务器,真的很简单重要提醒,本教材适用于gitolitev2,与当前最新版v3不兼容!!需要在checkoutgitolite后,切换到v2版!!其实真的只需要几句#现在开始是root做的#安装Gitapt-getinstallgit#拷贝你自己的公钥cp~/.ssh/id_rsa.pub/tmp/wendal.pubgitclonegit://github.com/sitaramc/gitoli…

  • 群晖Virtual Machine Manager虚拟机安装OpenWrt软路由作为旁路由的详细步骤

    群晖Virtual Machine Manager虚拟机安装OpenWrt软路由作为旁路由的详细步骤0.前言:本来一直都是在Windows10的Hyper-V中虚拟软路由的,直到有一天突发奇想,手贱在windows10宿主机中安装了个安卓模拟器,由于众所周知的原因,安卓模拟器是不能同时与Hyper-V虚拟机共存的,虽然我在安装后运行安卓模拟器的时候没有去点击那个关闭Hyper-V的提示按钮,并且迅速点击了退出按钮,但是悲剧还是发生了,我的Windows10宿主机在重启后自动关闭了Hyper-V功能,导致我在其中安装的openwrt旁路由、centos测试环境都熄火了!然后就是赶紧在【程序】中添加【Hy

  • 【Redis】Redis4.0、5.0、6.0版本特性整理「建议收藏」

    【Redis】Redis4.0、5.0、6.0版本特性整理「建议收藏」文章目录Redis版本特性Redis4模块系统PSYNC2.0缓存驱逐策略优化LazyFree交换数据库混合持久化内存命令兼容NAT和DockerActiveDefrag其他Redis5Stream类型新的Redis模块API集群管理器更改Lua改进RDB格式变化动态HZZPOPMIN&ZPOPMAX命令CLIENT新增命令其他Redis6多线程IOSSL支持ACL支持RESP3客户端缓存集群代理Disquemodule其他Redis版本特性Redis4模块系统​ R

  • 超声波指纹识别和光学指纹识别_指纹识别不了怎么办

    超声波指纹识别和光学指纹识别_指纹识别不了怎么办三星2月20日将发表年度旗舰机种S系列,据市场传出,GalaxyS10的终端售价将比S9更高,突破1000美元大关,外界预测,S10将搭载高通专利的超声波(Ultra-Sonic)指纹识别,而A系列则将首度采用光学式(Optical)指纹识别技术。去年机种都还采用电容式方案的三星,今年依照不同等级机型采用不同方案,让超声波、光学、电容式同时并存在今年产品当中,这也让…

  • idea 查看jsp是否被引用_idea 运行JSP后显示源代码是什么情况

    idea 查看jsp是否被引用_idea 运行JSP后显示源代码是什么情况该楼层疑似违规已被系统折叠隐藏此楼查看此楼没加struts的jar包时可以用,加上jar包后就不能用了。tomcat好像有一个报错信息”C:\ProgramFiles\Java\apache-tomcat-7.0.54\bin\catalina.bat”run[2014-09-1909:05:12,773]Artifactdemo:warexploded:Serverisnot…

    2022年10月21日
  • interview-db[通俗易懂]

    interview-db[通俗易懂]1.索引作用和优缺点索引就一种特殊的查询表,数据库的搜索可以利用它加速对数据的检索。它很类似与现实生活中书的目录,不需要查询整本书内容就可以找到想要的数据。索引可以是唯一的,创建索引允许指定单个列或者是多个列。缺点是它减慢了数据录入的速度,同时也增加了数据库的尺寸大小。2.什么字段适合建索引唯一性比较高,不为空,经常查询3.常见慢查询优化1.建索引2.减少表之间的关联3.优化sql,尽量让sq…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号