大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重新赋值或是做一些判断操作,所以如果将它转化为numpy数组就好处理了。下面一个小程序讲述了将tensor转化为numpy数组,以及又重新还原为tensor:
import tensorflow as tf
img1 = tf.constant(value=[[[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]],[[1],[2],[3],[4]]]],dtype=tf.float32)
img2 = tf.constant(value=[[[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]],[[1],[1],[1],[1]]]],dtype=tf.float32)
img = tf.concat(values=[img1,img2],axis=3)
sess=tf.Session()
#sess.run(tf.initialize_all_variables())
sess.run(tf.global_variables_initializer())
print(“out1=”,type(img))
#转化为numpy数组
img_numpy=img.eval(session=sess)
print(“out2=”,type(img_numpy))
#转化为tensor
img_tensor= tf.convert_to_tensor(img_numpy)
print(“out2=”,type(img_tensor))
输出:
out1=
out2=
out2=
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/184026.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...