大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
大括号显示
$$
\left\{
\begin{array}{**lr**}
x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\
y=s, & 0\leq s\leq L,|t|\leq1.\\
z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), &
\end{array}
\right.
{ x = 3 π 2 ( 1 + 2 t ) cos ( 3 π 2 ( 1 + 2 t ) ) , y = s , 0 ≤ s ≤ L , ∣ t ∣ ≤ 1. z = 3 π 2 ( 1 + 2 t ) sin ( 3 π 2 ( 1 + 2 t ) ) , \left\{ \begin{array}{lr} x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\ y=s, & 0\leq s\leq L,|t|\leq1.\\ z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), & \end{array} \right. ⎩⎪⎪⎨⎪⎪⎧x=23π(1+2t)cos(23π(1+2t)),y=s,z=23π(1+2t)sin(23π(1+2t)),0≤s≤L,∣t∣≤1.
对比括号一
\left\{
\begin{array}{**rcl**}
IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\
IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\
\left |IF'_{k}(\hat{t}_{k,m} - IF'_{m}(\hat{t}_{k,m} \right |\geq d , &
\end{array}
\right.
{ I F k ( t ^ k , m ) = I F m ( t ^ k , m ) , I F k ( t ^ k , m ) ± h = I F m ( t ^ k , m ) ± h , ∣ I F k ′ ( t ^ k , m − I F m ′ ( t ^ k , m ∣ ≥ d , \left\{ \begin{array}{rcl} IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\ IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\ \left |IF’_{k}(\hat{t}_{k,m} – IF’_{m}(\hat{t}_{k,m} \right |\geq d , & \end{array} \right. ⎩⎨⎧IFk(t^k,m)=IFm(t^k,m),IFk(t^k,m)±h=IFm(t^k,m)±h,∣∣IFk′(t^k,m−IFm′(t^k,m∣∣≥d,
常用的三种大括号写法
$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
$$
f ( x ) = { x = cos ( t ) y = sin ( t ) z = x y f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=⎩⎪⎪⎨⎪⎪⎧xyz===cos(t)sin(t)yx
$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L & & {0 < S_L}\\
F^*_L & & {S_L \leq 0 < S_M}\\
F^*_R & & {S_M \leq 0 < S_R}\\
F_R & & {S_R \leq 0}
\end{array} \right. $$
F H L L C = { F L 0 < S L F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=⎩⎪⎪⎨⎪⎪⎧FLFL∗FR∗FR0<SLSL≤0<SMSM≤0<SRSR≤0
$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$
\end{CJK*}
\end{document}
f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={
01x=0x!=0
$$
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
$$
0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0i−i0)[01−10]{
100−1}∣∣∣∣acbd∣∣∣∣∥∥∥∥i00−i∥∥∥∥
功能 语法 显示
不好看
\frac{1}{2}
( 1 2 ) ( \frac{1}{2} ) (21)
好一点
\left( \frac{1}{2} \right)
$\left ( \frac{1}{2} \right ) $
您可以使用\left和\right来显示不同的括号:
功能 语法 显示
圆括号,小括号
\left( \frac{a}{b} \right)
( a b ) \left( \frac{a}{b} \right) (ba)
方括号,中括号
\left[ \frac{a}{b} \right]
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183037.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...