latex公式中括号_公式中的大括号怎么打

latex公式中括号_公式中的大括号怎么打功能语法显示不好看\frac{1}{2}(12)(\frac{1}{2})好一点\left(\frac{1}{2}\right)(12)\left(\frac{1}{2}\right)您可以使用\left和\right来显示不同的括号:功能语法显示圆括号,小括号\left(\frac{a}{b}\right)(ab)\left

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

大括号显示

$$
\left\{  
             \begin{array}{**lr**}  
             x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), &  \\  
             y=s, & 0\leq s\leq L,|t|\leq1.\\  
             z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), &    
             \end{array}  
\right.  

{ x = 3 π 2 ( 1 + 2 t ) cos ⁡ ( 3 π 2 ( 1 + 2 t ) ) , y = s , 0 ≤ s ≤ L , ∣ t ∣ ≤ 1. z = 3 π 2 ( 1 + 2 t ) sin ⁡ ( 3 π 2 ( 1 + 2 t ) ) , \left\{ \begin{array}{lr} x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\ y=s, & 0\leq s\leq L,|t|\leq1.\\ z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), & \end{array} \right. x=23π(1+2t)cos(23π(1+2t)),y=s,z=23π(1+2t)sin(23π(1+2t)),0sL,t1.
对比括号一

\left\{  
\begin{array}{**rcl**}
    IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\
    IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h  , &\\
    \left |IF'_{k}(\hat{t}_{k,m} - IF'_{m}(\hat{t}_{k,m} \right |\geq d , &   
\end{array}
\right.  

{ I F k ( t ^ k , m ) = I F m ( t ^ k , m ) , I F k ( t ^ k , m ) ± h = I F m ( t ^ k , m ) ± h , ∣ I F k ′ ( t ^ k , m − I F m ′ ( t ^ k , m ∣ ≥ d , \left\{ \begin{array}{rcl} IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\ IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\ \left |IF’_{k}(\hat{t}_{k,m} – IF’_{m}(\hat{t}_{k,m} \right |\geq d , & \end{array} \right. IFk(t^k,m)=IFm(t^k,m),IFk(t^k,m)±h=IFm(t^k,m)±h,IFk(t^k,mIFm(t^k,md,
常用的三种大括号写法

$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.
$$

f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=xyz===cos(t)sin(t)yx



$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L       &      & {0      <      S_L}\\
F^*_L     &      & {S_L \leq 0 < S_M}\\
F^*_R     &      & {S_M \leq 0 < S_R}\\
F_R       &      & {S_R \leq 0}
\end{array} \right. $$

F H L L C = { F L 0 < S L F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=FLFLFRFR0<SLSL0<SMSM0<SRSR0

$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$
\end{CJK*}
\end{document}

f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={
01x=0x!=0

$$
\begin{gathered}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}
\quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\quad
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix}
\quad
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}
\end{gathered}
$$

0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0ii0)[0110]{
1001}
acbdi00i

功能 语法 显示
不好看

\frac{1}{2} 

( 1 2 ) ( \frac{1}{2} ) (21)
好一点

\left( \frac{1}{2} \right)

$\left ( \frac{1}{2} \right ) $
您可以使用\left和\right来显示不同的括号:
功能 语法 显示
圆括号,小括号

\left( \frac{a}{b} \right)

( a b ) \left( \frac{a}{b} \right) (ba)
方括号,中括号

\left[ \frac{a}{b} \right]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/183037.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Tabnine Pro激活码【2021最新】

    (Tabnine Pro激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

  • Spark DataFrame简介(二)

    Spark DataFrame简介(二)

    2021年11月27日
  • 流量不清零、可转赠,对运营商未必是坏事

    流量不清零、可转赠,对运营商未必是坏事

  • neo4j如何安装_neo4j环境变量配置

    neo4j如何安装_neo4j环境变量配置一、neo4j简介最近开始学习知识图谱,所以首先想先学习一下neo4j的使用。Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。由于知识图谱中存在大量的关系型信息(实体—关系—实体),使用结构化数据库进行存储将产生大量的冗余存储信息,因此将图数据库作为知识图谱的存储容器成为流行的选择。当前较为常用的图数据库主要有Neo4j等。二、neo4j的安装功能快捷键撤销:Ctrl/Command+Z重做:Ctrl/Command+Y加粗:Ctrl/Co

    2022年10月26日
  • java vo 什么意思_在Java中VO , PO , BO , QO, DAO ,POJO是什么意思

    java vo 什么意思_在Java中VO , PO , BO , QO, DAO ,POJO是什么意思在Java中VO,PO,BO,DAO,POJO是什么意思最近在项目中,遇到VO,我的天。。。那就一起学习回忆一下首先简单说明下:O/RMapping是ObjectRelationalMapping(对象关系映射)的缩写。简单来说,就是将对象和关系数据库绑定,用对象来表示关系数据。JavaWEB三层架构咱们更需要熟练使用VO:值对象(ValueObject)用new关键字创建…

  • navicat注册激活[最新免费获取]

    (navicat注册激活)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号