Spark DataFrame基础操作
创建SparkSession和SparkContext
val spark = SparkSession.builder.master("local").getOrCreate() val sc = spark.sparkContext
从数组创建DataFrame
spark.range(1000).toDF("number").show()
指定Schema创建DataFrame
val data = Seq( Row("A", 10, 112233), Row("B", 20, 223311), Row("C", 30, 331122)) val schema = StructType(List( StructField("name", StringType), StructField("age", IntegerType), StructField("phone", IntegerType))) spark.createDataFrame(sc.makeRDD(data), schema).show()
从JSON文件加载DataFrame
/* data.json {"name":"A","age":10,"phone":112233} {"name":"B", "age":20,"phone":223311} {"name":"C", "age":30,"phone":331122} */ spark.read.format("json").load("/Users/tobe/temp2/data.json").show()
从CSV文件加载DataFrame
/* data.csv name,age,phone A,10,112233 B,20,223311 C,30,331122 */ spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()
读取MySQL数据库加载DataFrame
/* data.csv name,age,phone A,10,112233 B,20,223311 C,30,331122 */ spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()
RDD转DataFrame
/* data.csv name,age,phone A,10,112233 B,20,223311 C,30,331122 */ spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()
创建Timestamp数据
Spark的TimestampType类型与Java的java.sql.Timestamp对应,
/* data.csv name,age,phone A,10,112233 B,20,223311 C,30,331122 */ spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()
创建DateType数据
Spark的DateType类型与Java的java.sql.Date对应,
/* data.csv name,age,phone A,10,112233 B,20,223311 C,30,331122 */ spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/119645.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...