大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
多项变量(Multinomial Variables)
二元变量是用来描述只有两种可能值的量,而当我们遇到一种离散变量,其可以有K种可能的状态。我们可以使用一个K维的向量x表示,其中只有一维xk为1,其余为0。对应于xk=1的参数为μk,表示xk发生时的概率。其分布可以看做是伯努利分布的一般化。
现在我们考虑N个独立的观测D={x1,…,xN},得到其似然函数。如图:
多项式分布(The Multinomial distribution)
现在我们考虑k个变量的联合分布,依赖于参数μ和N次观测,这就构成了多项式分布。
狄利克雷分布(The DIrichlet distribution)
为了方便起见,如果先验分布和似然函数有类似的结构,这样得到的后验分布就只是指数幂的参数的相加,但形式没有太大变化,这样就使得先验和后验分布有相同的形式,简化了计算。
下面是三个变量的狄利克雷分布的图形,其中左图{αk}=0.1,中图{αk}=1,右图{αk}=10:
最大后验估计
转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/182974.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...