pr曲线 roc曲线_roc曲线与auc的含义

pr曲线 roc曲线_roc曲线与auc的含义评价指标系列PR曲线查准率和查全率PR曲线绘制ROC曲线TPR,FPR插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入PR曲线AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。查准率和查全率查准率,表示所有被预测为正类的样本(TP+F

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

PR曲线

混淆矩阵

预测 \真实 P N
P TP FP
N FN TN

查准率和查全率

查准率,表示所有被预测为正类的样本(TP+FP)是真正类(TP)的比例:
P = T P T P + F P P= \frac{TP}{TP+FP} P=TP+FPTP
查全率,表示所有真正类的样本(TP+FN)中被预测为真正类(TP)的比例:
R = T P T P + F N R= \frac{TP}{TP+FN} R=TP+FNTP

PR曲线绘制

PR曲线的横坐标为召回率R,纵坐标为查准率P

  1. 将预测结果按照预测为正类概率值排序
  2. 将阈值由1开始逐渐降低,按此顺序逐个把样本作为正例进行预测,每次可以计算出当前的P,R值
  3. 以P为纵坐标,R为横坐标绘制图像

图片名称

如何利用PR曲线对比性能:

  1. 如果一条曲线完全“包住”另一条曲线,则前者性能优于另一条曲线。
  2. PR曲线发生了交叉时:以PR曲线下的面积作为衡量指标,但这个指标通常难以计算
  3. 使用 “平衡点”(Break-Even Point),他是查准率=查全率时的取值,值越大代表效果越优
  4. BEP过于简化,更常用的是F1度量:
    F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样 本 总 数 + T P − T N F1= \frac{2*P*R}{P+R}=\frac{2*TP}{样本总数+TP-TN} F1=P+R2PR=+TPTN2TP

ROC曲线

AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。

TPR和FPR

真阳性率: T P R = T P T P + F N TPR= \frac{TP}{TP+FN} TPR=TP+FNTP
假阳性率: F P R = F P F P + T N FPR= \frac{FP}{FP+TN} FPR=FP+TNFP

ROC曲线绘制

ROC曲线的横坐标为FPR,纵坐标为TPR

  1. 将预测结果按照预测为正类概率值排序
  2. 将阈值由1开始逐渐降低,按此顺序逐个把样本作为正例进行预测,每次可以计算出当前的FPR,TPR值
  3. 以TPR为纵坐标,FPR为横坐标绘制图像

图片名称

如何利用ROC曲线对比性能:
ROC曲线下的面积(AUC)作为衡量指标,面积越大,性能越好

AUC的计算

AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。 AUC的统计意义是从所有正样本随机抽取一个正样本,从所有负样本随机抽取一个负样本,对应的预测probability中该正样本排在负样本前面的概率。
计算原理:所有的样本对中被正确排序的样本对(正类排在负类前面)的比例。

  1. 设正样本M个,负样本N个,样本总量n。
  2. 计算预测结果中每个样本的rank值,及升序排列后的位置,probability最大的样本rank为n。
  3. 当一个正样本在正类预测结果的升序排列中排在第k位,则证明它与排在其后面的负样本构成了正确排序对,则所有正确排序的样本对的总和为:
    举个例子:
    例如 ( r a n k 0 − 1 ) (rank_0-1) (rank01)表示rank最小的正例可以和 r a n k 0 − 1 rank_0-1 rank01个负样本构成正确样本对。
    C o r r e c t P a i r = ( r a n k 0 − 1 ) + ( r a n k 1 − 2 ) + . . . + ( r a n k i − ( i + 1 ) ) + . . + ( r a n k M − 1 − M ) = ∑ i ∈ 正 样 本 集 合 r a n k i − ∑ ( M + ( M − 1 ) + . . . + 1 ) = ∑ i ∈ 正 样 本 集 合 r a n k i − M ∗ ( M + 1 ) 2 CorrectPair = (rank_0-1) + (rank_1-2)+…\\ +(rank_i-(i+1))+..+(rank_{M-1}-M)\\ = \sum_{i\in 正样本集合}{rank_i}-\sum(M+(M-1)+…+1)\\ =\sum_{i\in 正样本集合}{rank_i}-\frac{M*(M+1)}{2} CorrectPair=(rank01)+(rank12)+...+(ranki(i+1))+..+(rankM1M)=iranki(M+(M1)+...+1)=iranki2M(M+1)

则AUC计算公式为:
A U C = C o r r e c t P a i r M ∗ N AUC=\frac{CorrectPair}{M*N} AUC=MNCorrectPair

python 代码实现及注解

def cacu_auc(label, prob):
    ''' :param label: 样本的真实标签 :param prob: 分类模型的预测概率值,表示该样本为正类的概率 :return: 分类结果的AUC '''
    # 将label 和 prob组合,这样使用一个key排序时另一个也会跟着移动
    temp = list(zip(label, prob))
    # 将temp根据prob的概率大小进行升序排序
    rank = [val1 for val1, val2 in sorted(temp, key=lambda x: x[1])]
    # 将排序后的正样本的rank值记录下来
    rank_list = [i+1 for i in range(len(rank)) if rank[i]==1]
    # 计算正样本个数m
    M = sum(label)
    # 计算负样本个数N
    N=len(label)-M
    return (sum(rank_list)-M*(M+1)/2)/(M*N)

类别不平衡问题

这里特指负样本数量远大于正样本时,在这类问题中,我们往往更关注正样本是否被正确分类,即TP的值。PR曲线更适合度量类别不平衡问题中:

  1. 因为在PR曲线中TPR和FPR的计算都会关注TP,PR曲线对正样本更敏感。
  2. 而ROC曲线正样本和负样本一视同仁,在类别不平衡时ROC曲线往往会给出一个乐观的结果。

参考
[1]: https://blog.csdn.net/ft_sunshine/article/details/108833761
[2]: 《机器学习》周志华

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/179653.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 六个主要的社会网络分析软件的比较

    六个主要的社会网络分析软件的比较
    UCINET简介  
        UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliq

  • linux常用net命令「建议收藏」

    linux常用net命令「建议收藏」图:

  • python lambda表达式_Python进阶

    python lambda表达式_Python进阶Lambda表达式lambda表示的是匿名函数,不需要用def来声明,一句话就可以声明出一个函数语法函数名=lambda参数:返回值注意点1.函数的参数可以有多个,多个参数之间用逗号隔

  • 黑盒测试用例测试方法

    黑盒测试用例测试方法黑盒测试用例设计方法一、等价类划分法等价类划分法是一种典型的、重要的黑盒测试方法,是指某个输入域的子集合。在该子集合中,所有的输入数据对于揭露软件中的错误都是等效的。等价类划分有效等价类和无效等价类例如:微信红包的例子【0.01-200】按数据范围划分:有效的:0.01-200(1)无效的:小于0.01(2)…

  • ETL工具-Kettle Spoon教程

    ETL工具-Kettle Spoon教程一。KettleSpoon简介   ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,了解并掌握一种etl工具的使用,必不可少,支持图形化的GUI设计界面,然后可以以工作流的形式流转,在做一些简单或复杂的数据抽取、质量检测、数据清洗、数据转换、数据过滤等方面有着比较稳定的表现,使…

  • Java中Hashtable和HashMap区别「建议收藏」

    Java中Hashtable和HashMap区别「建议收藏」第一,继承不同。

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号