PyCharm安装torch以及pytorch-pretrained-bert简单使用

PyCharm安装torch以及pytorch-pretrained-bert简单使用安装torch运行Pycharm中的代码时候提示ModuleNotFoundError:Nomodulenamed‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。摘取一段放在这里供大家参考。#CUDA10.0pipinstalltorch===1.2.0torchvision===0.4.0-fhttps://download.pytorc

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

目录

安装torch

pytorch-pretrained-bert简单使用


安装torch

运行Pycharm中的代码时候提示ModuleNotFoundError: No module named ‘torch’。试了很多种方法都不行,然后进入官网查了下具体的安装方法,附上网址https://pytorch.org/get-started/previous-versions/。
摘取一段放在这里供大家参考。

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2
pip install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only
pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

pytorch-pretrained-bert简单使用

从下载模型权重开始

# 切换到你的anaconda gpu 环境
# source activate 你的conda环境名称
​
# 安装加载预训练模型&权重的包
pip install pytorch-pretrained-bert

接着就是下载模型权重文件了,pytorch-pretrained-bert官方下载地址太慢了…,推荐去kaggle下载L-12_H-768-A-12 uncase版本,下载地址在这里,里面有两个文件,都下载下来,并把模型参数权重的文件bert-base-uncased解压出来,然后放在你熟悉的硬盘下即可。

加载模型试试

from pytorch_pretrained_bert import BertModel, BertTokenizer
import numpy as np
import torch

# 加载bert的分词器
tokenizer = BertTokenizer.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased-vocab.txt')
# 加载bert模型,这个路径文件夹下有bert_config.json配置文件和model.bin模型权重文件
bert = BertModel.from_pretrained('E:/Projects/bert-pytorch/bert-base-uncased/')

s = "I'm not sure, this can work, lol -.-"

tokens = tokenizer.tokenize(s)
print("\\".join(tokens))
# "i\\'\\m\\not\\sure\\,\\this\\can\\work\\,\\lo\\##l\\-\\.\\-"
# 是否需要这样做?
# tokens = ["[CLS]"] + tokens + ["[SEP]"]

ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
print(ids.shape)
# torch.Size([1, 15])

result = bert(ids, output_all_encoded_layers=True)
print(result)

没问题,那么bert返回给我们了什么呢?

result = (
    [encoder_0_output, encoder_1_output, ..., encoder_11_output], 
    pool_output
)
  1. 因为我选择了参数output_all_encoded_layers=True,12层Transformer的结果全返回了,存在第一个列表中,每个encoder_output的大小为[batch_size, sequence_length, hidden_size];
  2. pool_out大小为[batch_size, hidden_size],pooler层的输出在论文中描述为:
    which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (CLS) to train on the Next-Sentence task (see BERT’s paper).
    也就是说,取了最后一层Transformer的输出结果的第一个单词[cls]的hidden states,其已经蕴含了整个input句子的信息了。
  3. 如果你用不上所有encoder层的输出,output_all_encoded_layers参数设置为Fasle,那么result中的第一个元素就不是列表了,只是encoder_11_output,大小为[batch_size, sequence_length, hidden_size]的张量,可以看作bert对于这句话的表示。

用bert微调我们的模型

将bert嵌入我们的模型即可。

class CustomModel(nn.Module):
    
    def __init__(self, bert_path, n_other_features, n_hidden):
        super().__init__()
        # 加载并冻结bert模型参数
        self.bert = BertModel.from_pretrained(bert_path)
        for param in self.bert.parameters():
            param.requires_grad = False
        self.output = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(768 + n_other_features, n_hidden),
            nn.ReLU(),
            nn.Linear(n_hidden, 1)
        )
    def forward(self, seqs, features):
        _, pooled = self.bert(seqs, output_all_encoded_layers=False)
        concat = torch.cat([pooled, features], dim=1)
        logits = self.output(concat)
        return logits

测试:

s = "I'm not sure, this can work, lol -.-"
​
tokens = tokenizer.tokenize(s)
ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
# print(ids)
# tensor([[1045, 1005, 1049, 2025, 2469, 1010, 2023, 2064, 2147, 1010, 8840, 2140,
#         1011, 1012, 1011]])
​
model = CustomModel('你的路径/bert-base-uncased/',10, 512)
outputs = model(ids, torch.rand(1, 10))
# print(outputs)
# tensor([[0.1127]], grad_fn=<AddmmBackward>)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/175034.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 逆变器运用到的c语言算法,详解六种逆变电源的控制算法[通俗易懂]

    逆变器运用到的c语言算法,详解六种逆变电源的控制算法[通俗易懂]在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。本文引用地址:http://www.eepw.com.cn/article/201710/366918.htm只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,小编将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关…

  • linux shell指令大全整理

    linux shell指令大全整理整理了linuxshell中经常用到的指令和语法

    2022年10月18日
  • 彻底卸载pycharm 恢复环境

    彻底卸载pycharm 恢复环境彻底卸载pycharm配置文件恢复最初环境

  • 阿里云分析数据库_阿里云用的什么数据库

    阿里云分析数据库_阿里云用的什么数据库前言由于工作中应用到了阿里的分析型数据库产品,虽然它类似于mysql,但又有一些区别,通过好好的了解它,才能解决自己的性能优化方面的疑惑。一、定义从官方文档了解到其的定义为:阿里云分析型数据库AnalyticDB(简称ADB),是云端托管的PB级高并发实时数据仓库,是专注于服务OLAP领域的数据仓库。在数据存储模型上,采用关系模型进行数据存储,可以使用SQL进行自由灵活的计算分析,无需预…

  • spring boot redis 缓存_redis本地缓存

    spring boot redis 缓存_redis本地缓存SpringBoot集成Redis缓存查询操作是应用中最常见的操作,如果每次查询都从MySQL中查询则会影响效率,通常需要引入缓存来实现查询性能的优化。缓存可以选择本地缓存,远程缓存或本地缓存结合远程缓存。本地缓存可以使用Guava或Caffeine提供的解决方案,而远程缓存则可以选择Redis这样的内存数据库。本文记录一下SpringBoot集成Redis做缓存的相关配置。1引入依赖引入相应Starter。<dependency><gr

  • sql日期格式转换为字符串_sql server函数大全

    sql日期格式转换为字符串_sql server函数大全sqlserver日期格式与字符串转换在sqlserver数据库中,sqlserver日期时间格式转换字符串可以改变sqlserver日期和时间的格式,是每个SQL数据库用户都应该掌握的。日期时间转字符串:SelectCONVERT(varchar(100),GETDATE(),0):0516200610:57AMSelect…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号