关于用户路径分析模型_spark用户行为路径

关于用户路径分析模型_spark用户行为路径在网页或者营销渠道中,用户行为模型有比较多,基于渠道的,笔者觉得有:渠道类型渠道重要性渠道跳转与流失单渠道,多节点路径分析,漏斗功能多渠道归因分析这里多渠道指的是,单渠道多节点的场景比较好理解,就是进入某个web\小程序,在不同页面之间进行跳转,多渠道这里比较多的就是,同一用户在不同的较大的场景下的流转,比如在小红书种草->微信好友推荐->淘宝上买了。归因分析是通过一定的逻辑方法,计算每个渠道、或者触点对最终结果贡献程度的方法。有一套合理

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在网页或者营销渠道中,用户行为模型有比较多,基于渠道的,笔者觉得有:

渠道类型 渠道重要性 渠道跳转与流失
单渠道,多节点 路径分析,漏斗功能
多渠道 归因分析
这里多渠道指的是,单渠道多节点的场景比较好理解,就是进入某个web \ 小程序,在不同页面之间进行跳转,多渠道这里比较多的就是,同一用户在不同的较大的场景下的流转,比如在小红书种草 -> 微信好友推荐 -> 淘宝上买了。

归因分析是通过一定的逻辑方法,计算每个渠道、或者触点对最终结果贡献程度的方法。有一套合理的归因办法,才能科学地衡量不同渠道的广告价值,指导更好的投放。
其是衡量某一个渠道/触点价值的,没有考虑触点之间的跳转。

关于归因分析,之前笔者有整理:
多渠道归因分析(Attribution):传统归因(一)

本篇主要来看看路径/漏斗分析。



1 路径与漏斗分析几个重要知识点

1.1 路径分析

通常用户在需要进行路径分析的场景时关注的主要问题:

  • 按转换率从高至低排列在APP内用户的主要路径是什么;
  • 用户在离开预想的路径后,实际走向是什么?
  • 不同特征的用户行为路径有什么差异?
  • 某个页面,引导用户去往哪个页面,对转化率最有利?

我们可以很好地发现用户的流转特点,发现用户是从哪些环节、哪些页面流失、或者发生了阻碍,从而有针对性地优化产品,提升业绩。
比如,我们发现很多用户在加购后没有进行支付,我们就可以通过路径分析,看看用户加购后,都去哪里了、发生了什么操作。如此,有可能找到支付率低的原因所在。

在这里插入图片描述

1.2 漏斗分析

漏斗分析是分析用户从起始到终点环节,过程当中每一步环节的转化(或者流失)情况。通过漏斗,可以找出全链路业务的问题环节所在,从而进行针对性优化。
几个特点:

  • (1)是分多层、多环节的
  • (2)各环节是有转化率(或者流失)效应的
  • (3)环节之间有先后顺序
    在这里插入图片描述

1.3 路径与漏斗分析的差异

漏斗分析是固化了具体的分析过程或者业务环节,然后分析这几个大的业务环节的转化;而路径分析,是固化了用户的路径顺序,在每个路径次序中,都包含了各个主要业务环节,因此在每一步中,出现的业务环节很有可能都是类似的。

总而言之,漏斗分析看重的是业务环节之间的留存关系,而路径分析看重的是用户在不同业务环节中的顺序及流失关系。

1.4 Session和Session Time

本模型中的Session Time的含义是,当两个行为间隔时间超过Session Time,我们便认为这两个行为不属于同一条路径。

使用更加灵活的Session划分,使得用户可以查询到在各种时间粒度(5,10,15,30,60分钟)的Session会话下,用户的页面转化信息。
假设有用户a和用户b,a用户当天发生的行为事件分别为 E1, E2, E3… , 对应的页面分别为P1, P2, P3… ,事件发生的时间分别为T1, T2, T3… ,选定的session间隔为tg。如图所示T4-T3>tg,所以P1,P2,P3被划分到了第一个Session,P4,P5被划分到了第二个Session,同理P6及后面的页面也被划分到了新的Session。
在这里插入图片描述

当然,如果支持选择不同粒度的session,数据计算要求较高

1.5 邻近页面去重

不同的事件可能对应同一页面,临近的相同页面需要被过滤掉,所以划分session之后需要做的就是相邻页面去重。
不过,这里是否去重还要根据实际业务场景来判定。
在这里插入图片描述


2 路径分析与桑基图

2.1 桑基图

桑基图主要是用来显示流向和数量。最大的特点,就是开始与结束是保持总量守恒的。
在这里插入图片描述

看出全体用户是从哪个地方来,经过一步一步的环节后,到了哪里去。另外一种和桑基图比较相似的图,是和弦图。如下示例:
在这里插入图片描述
和弦图主要是呈现从一个内容转移到另外所有内容的情况,呈现不了桑基图多层环节的内容,仅仅是一个环节。

2.2 完整桑基图的数据结构与数据库选型

2.2.1 数据结构

来自vivo的这篇提到了他们超大规模工程化的数据结构,类似知识图谱图数据库的存储结构了。
构造桑基图可以简化为一个图的压缩存储问题。图通常由几个部分组成:

  • 边(edge)
  • 点(vertex)
  • 权重(weight)
  • 度(degree)

采用邻接表进行存储。邻接表是一种常用的图压缩存储结构,借助链表来保存图中的节点和边而忽略各节点之间不存在的边,从而对矩阵进行压缩。
在这里插入图片描述
如下左图就是我们的邻接表设计。左侧顺序列表存储的是各个节点(Vertex),包含节点名称(name)、节点代码(code)等节点信息和一个指向边(Edge)列表的指针;每个节点(Vertex)指向一个边(Edge)链表,每条边保存的是当前边的权重、端点信息以及指向同节点下一条边的指针。

在这里插入图片描述
在这里插入图片描述

2.2.2 大规模数据库选型:ClickHouse

通过Spark分析计算的结果数据需要写入Clickhouse来线上服务,写入Hive来作为数据冷备份,可以进行Clickhouse的数据恢复。
在这里插入图片描述

列存储的方式,对于这种超大规模数据的统计/计算查询数据非常便捷。
在这里插入图片描述

2.3 路径分级与树的剪枝

2.3.1 路径分级

在这里插入图片描述
比如这个so的案例,p1 -> p2 -> p3 -> p4 - > p5 -> p6 -> p4就可以分成多级。
p1p2p3,单个节点构成了一级,
p1 -> p2p2-> p3 构成了二级,
p1 -> p2 -> p3p5 -> p6 -> p4 构成了三级

分级是为了更加细致地解析整个流程中,不同流程进度下的过程。

2.3.2 树的剪枝

剪枝是树的构造中一个重要的步骤,指删去一些不重要的节点来降低计算或搜索的复杂度。页面路径模型中,我们在剪枝环节对原始数据构造的树进行修整,去掉不符合条件的分支,来保证树中每条根节点到叶节点路径的完整性。

剪枝主要有几个方向:

  • 清除孤立节点
  • 过滤不完整路径

在这里插入图片描述

  • 完整路径的定义:路径深度达到5且结束节点为退出或其它节点;路径深度未达到5且结束节点为退出。可见,图中标红的部分(node4_lv1 → node3_lv2)是一条不完整路径。
  • 原始树中还会出现孤立节点(绿色节点node4_lv2)。这是由于在取数阶段,我们会对数据进行分层排序再取出,这样一来无法保证每层数据的关联性。

2.4 路径分析主要统计指标

  • PV即Page View,访问次数,本模型中指的是一段时间内访问的次数;
  • SV即Session View,会话次数,本模型中指出现过该访问路径的会话数。
    如,
    有路径一:A → B → C → D → A → B和路径二:A → B → D,
    那么,
    A → B的
    PV为2+1=3,SV为1+1=2。

PV和SV是比较通常的指标,针对节点 / 路径会有不同的延申。

针对节点的PV / SV延申出:

  • 节点pv/sv = 当前节点在当前层次中的pv/sv总和
  • 节点转化率 = ( 节点pv/sv ) / ( 路径起始节点pv/sv )
  • 节点间pv/sv = 上一级节点流向当前节点的pv/sv
  • 节点间转化率 = ( 节点间pv/sv ) / ( 上一级节点pv/sv )

针对多级路径PV/SV延伸出:

  • 页面转化率:假设有路径 A-B-C,A-D-C,A-B-D-C,其中ABCD分别是四个不同页面各自的转化
  • 计算三级页面C的转化率:(所有节点深度为3的路径中三级页面是C的路径的pv/sv和)÷(一级页面的pv/sv)
  • 路径转化率:假设有A-B-C,A-D-C,A-B-D-C,其中ABCD分别是四个不同页面,整个路径下的转化
  • 计算A-B-C路径中B-C的转化率:(A-B-C这条路径的pv/sv)÷(所有节点深度为3的路径中二级页面是B的路径的pv/sv和)

3 获取路径的多级页面

vivo:用户行为分析模型实践(一)—— 路径分析模型这篇里面有比较详细的说明了他们获取多级页面的方式,不过不是特别让人看得懂。。

session = [['p1','p2','p3','p4','p5','p6','p4'],
['p1','p5','p1','p5','p1','p5','p1'],
['p6','p7','p8','p5','p9','p4'],
['p1','p4','p5','p1'],
['p4','p5','p2','p3','p5']]

sid = []
for nx,ps in enumerate(session):
    for n,p in enumerate(ps):
        prev_node = [-1 if r < 0  else ps[r]  for r in range(n-4,n)]
        now_node = ps[n]
        next_node = [-1 if r > len(ps)-1  else ps[r]  for r in range(n+1,n+5)]
        sid.append([nx] + prev_node + [now_node] + next_node)

cols = ['path','page_id_previous4','page_id_previous3','page_id_previous2','page_id_previous1',
'page','page_id_next1', 'page_id_next2', 'page_id_next3', 'page_id_next4']
sid_data = pd.DataFrame(sid,columns = cols)

在这里插入图片描述
以上是按照下面的分发得出的:
在这里插入图片描述

对于这个数据构造的方式,笔者也没细细琢磨,就先半路退堂,留下问题好了。。。

  • 这里的负向路径是怎么记录的?貌似上图的,左侧负向最下面两排和右侧正向最上面两排是重复的?
  • 这样列举多级,是不是还漏了很多?应该有20条左右
  • 计算PV/SV什么方式统计的?按列,全部相等?这样计算不会很快吧?

4 【阿里妈妈营销科学系列】第五篇:多渠道组合路径效率评价

【阿里妈妈营销科学系列】第五篇:多渠道组合路径效率评价

在这里插入图片描述
触点路径模型是客户旅程分析(Customer Journey Analytics)中的关键模型 ,它描绘了消费者接触渠道触点的种类、顺序、频次。触点路径模型的核心算法在于路径的定义与划分,分析不同人群在不同触点路径下的转化效率差异性。

渠道路径图通过可视化方式描绘用户在实现目标转化的过程中所经过的渠道路径,可以帮助广告主了解渠道间是如何合作完成转化的,比如哪些渠道触达量大/转化量大,哪些渠道为品牌广告做承接,哪些渠道为效果广告做助攻?
渠道路径图在序列化策略和渠道合作探索中均可应用:
对于已知的渠道间追加投放策略,验证A渠道触达的用户是否如预期被B渠道再次触达;
对于未知的投放策略,探索渠道间的自然合作效应。在这里插入图片描述
渠道组合与路径效率

渠道组合与路径效率衡量基于组合路径详情表格。详情表格给出促成目标转化的渠道路径,以及每个路径对应的总转化次数、价值, 结合付费渠道的成本、流量数据,可以衡量转化路径的目标转化率和投入回报。当转化路径忽略渠道的先后顺序,则为渠道组合。通过表格,我们可以进行多渠道效率提升分析和单渠道频次提升分析。
在这里插入图片描述


参考文献

vivo:用户行为分析模型实践(一)—— 路径分析模型
路径分析:如何将用户的网站行为轨迹可视化呈现?
漏斗分析:你可能低估了它的复杂度(逻辑细节及产品化)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/172657.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号