FEC详解二_第二十三卦详解

FEC详解二_第二十三卦详解前面简单说了一下FEC,以及它的配合使用的方法。下面我想详细说一下FEC算法:曾经有位大神在帖子里这么写着:采用改进型的vandermonde矩阵RS算法.其优点算法运算复杂度更低且解决了利用矩阵构造RS码当矩阵奇异时,构造的纠错码不为RS码的问题。FEC的方案:在RTP或私有协议头上扩展出包组头(Grouphead),一个Group有k个媒体包和r个冗余包组成,他们在Group

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前面简单说了一下FEC,以及它的配合使用的方法。下面我想详细说一下FEC算法

曾经有位大神在帖子里这么写着:采用改进型的vandermonde矩阵RS算法.其优点算法运算复杂度更低且解决了利用矩阵构造RS码当矩阵奇异时,构造的纠错码不为RS码的问题。

  • FEC的方案:在RTP或私有协议头上扩展出包组头(Group head),一个Group有k个媒体包和r个冗余包组成,他们在Group内拥有不同的组号,通过组号的连续性可以判断本组内数据包的丢失情况,从而选择性的予以恢复(冗余包丢失无需恢复)、因为UDP协议保障了包内数据的正确性,所以我们无需考虑包内纠错的情况。Group是一个完整的独立的FEC处理单元,不同Group之间无相关性。由于冗余性的存在,一个Group中任意k个数据包可以用来重建k个原始媒体包,如果丢失数据包数小于等于r,接受者收到一个Group中任意的k个数据包后,即可以通过组号信息确定丢失包的相对位置并进行FEC解码,以恢复k个原始媒体包。这里我们定义冗余包数r与原始媒体包数k的比值为FEC编码冗余度r/k,冗余度越高,抗丢包能力越强,同时传输效率也越低。

下面借鉴大神的FEC编解码算法进行简述:

1)数据包分割

对数据包FEc编码运算首先进行的是包内分割,将数据包分割为多个定长单元,定长单元成为自,设字长为w bits,w的取值一般为8/16/32。FEc编码对k个原始媒体包朱子进行处理,生成m个冗余数据包与之对应的字。

例如:现有两个原始数据包D1、D2,包的长度都为b bytes(对于包长不足b bytes的使用0补齐)– b B,字长为w  bits — w 位,那么一个数据包的总字长为1 = 8b/w。用这两个冗余包C1、C2的过程简述如下:

FEC详解二_第二十三卦详解FEC详解二_第二十三卦详解

图中F代表FEC编码运算

2)Vandermonde编解码以及改进

设k个原始媒体包D=(D1,D2,…,Dk),,r个冗余数据包C=(C1,C2,…,Cr),那么传输组Group表示为Y=(Y1,Y2,…,Yn),其中Yi=Di(0<=i<=k-1),Y

j=Cj(k<=j<=n-1)。B为 n x k 维 FEC生成矩阵,有单位矩阵I和矩阵G组成,则一个Group可表示为如下所示:

FEC详解二_第二十三卦详解 FEC详解二_第二十三卦详解

通过这种方式构造的RS码是系统码,信息组以不变的形式在码组的任意k位(通常在最前面: D1,D2,…,Dk)。如果以数据包为对象,那么传输组的前k个包就是k个被保护的数据包。在接收端,如果接收者收到了Group中的任意k个数据包,即可根据所收到的数据包在Group中的位置信息,从FEC生成矩阵B中提取对应的行,组成一个新的 kxk 维矩阵B‘,显然 

FEC详解二_第二十三卦详解

FEC详解二_第二十三卦详解

如果B’ 为非奇异矩阵,那么就可以通过如下逆变换得到原始数据报,完成恢复。

FEC详解二_第二十三卦详解

FEC详解二_第二十三卦详解

设计RS码的关键在于怎样设计生成矩阵B,也就是其系数矩阵G。本方案使用Vandermonde矩阵来构建系数矩阵G。常规定义Vandermonde矩阵V,r x k 维,如下所示:

FEC详解二_第二十三卦详解

FEC详解二_第二十三卦详解


系数矩阵G=V,该矩阵元素的运算都是在有限域GF(2^8)中进行的。Gij(i=0,1,…,r-1; j=0,1,…,k-1)为系数矩阵的元素,Ci(i=1,2,。。。,r)表示第i个冗余包,Dj(j=1,2,。。。,k)表示第j个原始媒体包,根据下式:

FEC详解二_第二十三卦详解

式运算时以包分割后的数据为运算单位的,模运算使用查表方式实现。例如发端使用k=6,r=2的荣誉模式,那么对应的系数矩阵为:

FEC详解二_第二十三卦详解

根据上面系数矩阵,可以计算得到冗余包为:

FEC详解二_第二十三卦详解

生成冗余包C1C2,发送端就可以一次发送原始媒体包和冗余包。如果发送的途中原始媒体包D3,D4丢失,那么接收端就可以根据收到的包恢复丢失的原始媒体包,具体过程如下:

  • 由于接收到的原始媒体包再次产生冗余包:

FEC详解二_第二十三卦详解

  • 其与接收到的冗余包作比较,就能得到丢失的原始媒体包的表达式:

FEC详解二_第二十三卦详解

  • 要求出D3、D4,可利用高斯消除法求出系数矩阵 的逆 矩阵,前提是该矩阵是非奇异的。

传统的Vandermonde矩阵构造RS码是,需要非奇异矩阵,由于Vandermonde矩阵元素取值与有限域,且元素的运算遵循有限域的运算规则,就会存在一定概率出现矩阵奇异,用该矩阵构造的纠错码就不是RS码,不能从任意k个包中恢复出原始媒体包。为此长沙这位大婶对该传统Vandermonde矩阵进行改进,解决了矩阵概率奇异的问题,具体实现见代码。

3)私有协议/RTP与FEC的结合,下文继续讲解


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/169608.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 开始画PAD图了_ipad如何画图

    开始画PAD图了_ipad如何画图这篇日志本来是应该昨天就写的,但是昨天回去的时候有点累,上了会网,把这个事给忘了。从昨天开始我就要开始画PAD图了,所谓的PAD图就是类似程序流程图的样子,用来帮助程序员快速掌握业务流程的一种方式。组长说先看结算业务主流程,把PAD图画上个两三遍,到下周的时候就要给我分配小任务了,不能再让我像现在这个样子,整天学习一点任务都不做了。尽管听上去不是很爽,但是我内心是十分想做任务的,因为我早就厌烦…

  • 教师资格证面试容易过吗_面试官不录用你的暗示

    教师资格证面试容易过吗_面试官不录用你的暗示什么是连接查询?笛卡尔积如何避免?内连接和外连接的概念是什么?表连接的原理是什么?SimpleNested-LoopJoin、IndexNested-LoopJoin、BlockNested-LoopJoin分别是什么概念?Nested-LoopJoin和BlockNested-LoopJoin对比分析驱动表用什么比较合适?

  • mysql取分组后最新的一条数据_mysql分组后取最大时间

    mysql取分组后最新的一条数据_mysql分组后取最大时间mysql取分组后最新的一条记录,下面两种方法.一种是先筛选出最大和最新的时间,在连表查询.一种是先排序,然后在次分组查询(默认第一条),就是最新的一条数据了#select*fromt_assistant_articleasa,(selectmax(base_id)asbase_id,max(create_time)ascreate_timefromt_assista

    2022年10月30日
  • Java代码求水仙花数

    Java代码求水仙花数这里写自定义目录标题Java代码求水仙花数Java代码求水仙花数//求水仙花数.//1.什么是水仙花数//2.水仙花数是一个三位数,且水仙花的个位,十位,百位的数字立法和等于原数。publicclassdemo_18{publicstaticvoidmain(String[]args){intnumber=0,x=0,y=0,z=0;//x表示3位数的百位上的数字,y表示三位百位上的数字,z表示三位数上个位的数字intcount

  • C语言read函数

    C语言read函数从文件中读取指定大小的字节函数read()语法:ssize_tread(intfd,void*buf,intcount)说明:read函数从指定的打开的文件fd中读取指定大小count的字节到从buf开始的缓冲区中.返回值:若读取失败则返回-1.读取成功则返回实际读取到的字节数,有两种情况:…

  • 为joomla加入�下拉菜单的方法

    为joomla加入�下拉菜单的方法

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号