线性代数的消元法_高斯消元法例题

线性代数的消元法_高斯消元法例题1.消元的思想针对下面的方程,我们无法直接得到方程的解。$$\begin{alignedat}{2}&x\space\space&2&y\space=\space

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1. 消元的思想

针对下面的方程,我们无法直接得到方程的解。

\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space+\space&2&y \space=\space 11 \end{alignedat}\]

但如果我们将第二个方程减去第一个方程的 3 倍,上面的方程组就变成了下面这样。

\[ \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&8&y \space=\space 8 \end{alignedat}\]

这时候,我们就可以直接得到 \(y=1\),进而从第一个方程得到 \(x=3\)

可以看到,消元之后,方程组变成了一个下三角(upper triangular)的形式,然后我们就可以用回带法(back substitution)来快速地解出方程组的解。

线性代数的消元法_高斯消元法例题

进行消元的那一行的第一个非零值称为主元(pivot),消元时候的乘数就等于待消项的系数除以主元,在上面的例子中,乘数 \(3 = 3 / 1\)。一般地,乘数可以表示为

\[l_{ij} = \frac{第\space i\space 行待消去项的系数}{第 \space j \space行的主元} \]

\[ \begin{alignedat}{2} 4&x \space- \space&8&y \space=\space 4 \\ 3&x\space+\space&2&y \space=\space 11 \end{alignedat}\]

如果我们改变了第一个方程,那么乘数就等于 \(3 / 4\)。消元之后,所有的主元都位于下三角的对角线上,并且主元不能是 0

\[ \begin{alignedat}{2} 4&x \space- \space&8&y \space=\space 4 \\ &\space\space&8&y \space=\space 8 \end{alignedat}\]

2. 消元的失效

  • 无解
\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space-\space&6&y \space=\space 11 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&0&y \space=\space 8 \end{alignedat}\]

这种情况下,我们遇到了 \(0y = 8\),说明原方程组无解。从行图像中,我们也可以看到,两条平行的直线无法相交于一点。而在列图像中,两个在同一方向上的向量不可能线性组合出不在这个方向上的向量。

线性代数的消元法_高斯消元法例题

  • 无穷解
\[\begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ 3&x\space-\space&6&y \space=\space 3 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} &x \space- \space&2&y \space=\space 1 \\ &\space\space&0&y \space=\space 0 \end{alignedat}\]

这种情况下,我们遇到了 \(0y = 0\),任何的 \(y\) 值都满足要求,此时 \(y\) 是“自由”的,确定了 \(y\) 之后 \(x\) 则由第一个方程确定。

从行图像中,我们也可以看到,两条直线相同,因此整条直线都是交点。而在列图像中,左边的两个向量和右边的向量方向都相同,有无穷多个线性组合都可以产生右边的向量。

线性代数的消元法_高斯消元法例题

对于有 \(n\) 个方程的方程组,如果我们得不到 \(n\) 个主元,那么消元就会导致 \(0\not = 0,无解\) 或者 \(0=0,无穷解\) ,只有正好有 \(n\) 个主元的时候,方程组才有解,但我们可能需要进行方程的交换。

  • 需要行交换
\[\begin{alignedat}{2} 0&x \space+ \space&2&y \space=\space 4 \\ 3&x\space-\space&2&y \space=\space 5 \end{alignedat} \quad{消元后}\quad \begin{alignedat}{2} 3&x\space-\space&2&y \space=\space 5 \\ &\space\space&2&y \space=\space 4 \end{alignedat}\]

一开始,第一行的主元为 0,行交换后,我们得到了两个主元 3 和 2,然后,方程就有了正常的解。

3. 三个未知数

\[\begin{alignedat}{2} 2&x \space+\space&4&y \space-\space&2&z=\space 2 \\ 4&x \space+\space&9&y \space-\space&3&z=\space 8\\ -2&x \space-\space&3&y \space+\space&7&z=\space 10 \end{alignedat}\]

第一步,方程 2 减去 2 倍的方程 1,得到 \(y+z=4\)
第二步,方程 3 减去 -1 倍的方程 1,得到 \(y+5z=12\)
第一步,方程 3 减去 1 倍的方程 2,得到 \(4z=8\)

\[\begin{alignedat}{2} \boldsymbol 2&x \space+\space&4&y \space-\space&2&z=\space 2 \\ & \space\space&\boldsymbol 1&y \space+\space&1&z=\space 8\\ & \space\space&& \space\space&\boldsymbol 4&z=\space 8 \end{alignedat}\]

三个主元分别为 2, 1, 4,然后我们就可以用回带法求出方程组的解。

4. 用矩阵的形式来消元

\[\begin{alignedat}{2} 2&x_1 \space+\space&4&x_2 \space-\space&2&x_3=\space 2 \\ 4&x_1\space+\space&9&x_2 \space-\space&3&x_3=\space 8\\ -2&x_1 \space-\space&3&x_2 \space+\space&7&x_3=\space 10 \end{alignedat} \leftrightarrow \begin{bmatrix} 2&4&-2 \\ 4&9&-3\\-2&-3&7\end{bmatrix} \begin{bmatrix} x_1 \\ x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8\\10 \end{bmatrix}\]

对方程的两边同时进行一步消元,第 2 个方程减去第 1 个方程的 2 倍,我们可以得到:

\[\begin{bmatrix} 2&4&-2 \\ 0&1&1\\-2&-3&7\end{bmatrix} \begin{bmatrix} x_1 \\ x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4\\10 \end{bmatrix}\]

相当于左右两边都乘以了一个矩阵 \(E_{21}\)

\[E_{21} = \begin{bmatrix} 1&0&0 \\ -2&1&0\\0&0&1\end{bmatrix} \]

\[E_{21} = \begin{bmatrix} 1&0&0 \\ -2&1&0\\0&0&1\end{bmatrix} * \begin{bmatrix} row1 \\ row2\\row3\end{bmatrix} = \begin{bmatrix} row1 \\ row2-2row1\\row3\end{bmatrix} \]

\(E_{21}\) 称为初等矩阵(elementary matrix)或者消元矩阵(elimination matrix),它可以很简单地从单位矩阵演化而来,\(E_{ij}\) 就是将单位矩阵 \((i, j)\) 位置的 0 换成消元过程的乘数 \(-l_{ij}\)

\[I = \begin{bmatrix} 1&0&0 \\ 0&1&0\\0&0&1\end{bmatrix} \to E_{21} = \begin{bmatrix} 1&0&0 \\ \boxed{-2}&1&0\\0&0&1\end{bmatrix} \]

获取更多精彩,请关注「seniusen」!
线性代数的消元法_高斯消元法例题

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167500.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Microsoft Office Excel 不能访问文件 的解决办法

    Microsoft Office Excel 不能访问文件 的解决办法

  • 高光谱图像分类综述_高光谱图像样本进行扩增

    高光谱图像分类综述_高光谱图像样本进行扩增PCA-PrincipleComponentAnalysis主成分分析ICA-IndependentComponentAnalysis独立成分分析NWFE-Nonparametric

  • 9b9t服务器显示连接超时,在WebRTC中ICE连接失败

    9b9t服务器显示连接超时,在WebRTC中ICE连接失败我们正在尝试将浏览器(客户端)与aiortc库(服务器,发送单个视频流)连接起来。目前,连接已成功建立(onsignalingstatechange稳定)。但是,媒体连接从未建立,因为ICE连接失败。这两台主机在同一个局域网上,并且已经验证了直接连接。使用的STUN服务器是STUN.l。谷歌:19302.在服务器上的日志如下:DEBUG:asyncio:Usingselector:Epol…

  • 多重共线性:python计算VIF以及使用vif做因子独立性检验的方法「建议收藏」

    多重共线性:python计算VIF以及使用vif做因子独立性检验的方法「建议收藏」转自:https://blog.csdn.net/ab1112221212/article/details/100133066多重共线性在python中的解决方法本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖线性模型与非线性模型关于线性模型与非线性模型的定义,似乎并没有确切的定论,但是个人认为建模首先得清楚地认识样本,样本有线性可分与线性不可分两种,所谓是否线性可分,是指是否存在一条直线(或平面)将样本分开。上图中y=0和y=1的样本可以由一

  • android开机动画多长时间_Android开机动画原理分析

    android开机动画多长时间_Android开机动画原理分析Android系统开机动画,是由bootanimation进程将多桢的图片按次序循环播放,在屏幕上形成的动画效果。这里介绍一下bootanimation的原理。1.bootanimation启动bootanimation是一个本地进程,代码由c++编写,它由init进程启动/init.rcservicebootanim/system/bin/bootanimationclasscore…

  • pytorch tensorboard使用_铅球是什么体育X项目

    pytorch tensorboard使用_铅球是什么体育X项目目录什么是TensorboardX配置TensorboardX环境要求安装使用pip安装从源码安装使用TensorboardX一些tips什么是TensorboardXTensorboard是TensorFlow的一个附加工具,可以记录训练过程的数字、图像等内容,以方便研究人员观察神经网络训练过程。可是对于PyTorch等其他神经网络训练框架并没有功能像Tensorboard…

    2022年10月11日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号