数据预处理无量纲化处理_统计数据的预处理

数据预处理无量纲化处理_统计数据的预处理1.无量纲化定义无量纲化,也称为数据的规范化,是指不同指标之间由于存在量纲不同致其不具可比性,故首先需将指标进行无量纲化,消除量纲影响后再进行接下来的分析。2.无量纲化方法无量纲化方法有很多,但

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

1.无量纲化定义

无量纲化,也称为数据的规范化,是指不同指标之间由于存在量纲不同致其不具可比性,故首先需将指标进行无量纲化,消除量纲影响后再进行接下来的分析。

2.无量纲化方法

无量纲化方法有很多,但是从几何角度来说可以分为:直线型、折线型、曲线形无量纲化方法。

(1)直线型无量纲化方法

直线型无量纲化方法是指指标原始值与无量纲化后的指标值之间呈现线性关系,常用的线性量化方法有阈值法、标准化法与比重法。

①阈值法是我们最熟悉也最常用的一种无量纲化方法,阈值也称临界值,是指衡量事物发展变化的一些特殊指标值,如极大值、极小值等,而阈值法就是通过实际值与阈值对比得到无量纲化指标值的方法。主要公式以及特点如下图中所示。

数据预处理无量纲化处理_统计数据的预处理

 

值得注意的一点,阈值参数的选取确定却会直接影响分析的结果,这里需考虑实际情况加上已有经验进行探索,逐步优化,直到寻找最合适的阈值(最合适就是结果可以达到让自己满意的程度)。

②标准化方法就是指标原始值减去该指标的均值然后比上其标准差。

无论指标实际值是多少,最终将分布在零的两侧,与阈值法相比,标准化方法利用样本更多的信息,且标准化后的数据取值范围将不在[0,1]之间。

③比重法是将指标实际值转化为他在指标值总和中所占的比重。

(2)折线型无量纲化方法

折线型无量纲化适用于被评价事物呈现阶段性变化,即指标值在不同阶段变化对事物总体水平影响是不一样的。

虽然折线型无量纲化方法比直线型无量纲化方法更符合实际情况,但是要想确定指标值的转折点不是一件容易的事情,需要对数据有足够的了解和掌握。

(3)曲线形无量纲化方法

 有些事物发展的阶段性变化并不是很明显,而前、中、后期的发展情况又各不相同,就是说指标值的变化是循序渐进的,并不是突变的,在这种情况下,曲线形无量纲化方法也更为合适,常用的曲线形无量纲化方法如下图所示:

数据预处理无量纲化处理_统计数据的预处理

(4)模糊无量纲化方法

综合评价中的评价指标可以分为正向指标(即指标值越大越好)、逆指标(即指标值越小越好)和适度指标(即指标值落在某个区间最好,大了、小了都不好),指标彼此之间“好”与“坏”并没有一个标准,在很大程度上具有一定的模糊性,这时候可以选择此方法对指标进行无量纲化处理,有兴趣自行搜索学习。

 

本文参考: https://wenku.baidu.com/view/34187066f01dc281e53af0fc.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167172.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号