随机漫步理论_随机漫步理论与巴菲特

随机漫步理论_随机漫步理论与巴菲特理论部分:代码部分:https://www.jianshu.com/p/numpy_test

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

理论部分:

 

 

代码部分:

import random
import matplotlib.pyplot as plt
import numpy as np
position = 0
walk = [position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)
#plt.plot(walk[:1000])


nsteps = 1000
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()  # 一维向量就可以这样来
#plt.plot(walk[:1000])

print( "min:" + str(walk.min()) )
print( "max:" + str(walk.max()) )
# 需要多久才能距离初始0点至少10步远(任一方向均可)
print((np.abs(walk) >= 10).argmax())


nwalks = 5000
nsteps = 1000
#模拟多个随机漫步过程(比如5000个)
draws = np.random.randint(-1, 1, size=(nwalks, nsteps)) # 0 or 1
print(draws)
steps = np.where(draws >= 0, 1, -1)
print(steps)
walks = steps.cumsum(1)
print(walks)
print("max: " + str(walks.max()) )
print("min: " + str(walks.min()))

# 用any方法来对此进行检查 因为不是5000个过程都到达了30的距离
hits30 = (np.abs(walks) >= 30).any(1)  
print("sum: " + str(hits30.sum()) )   # Number that hit 30 or -30
 
plt.plot(walks[0])
plt.plot(walks[1])
plt.plot(walks[2])
plt.plot(walks[3])
plt.plot(walks[4])
plt.plot(walks[5])
plt.plot(walks[6])
plt.plot(walks[7])
plt.plot(walks[8])

  

 随机漫步理论_随机漫步理论与巴菲特

随机漫步理论_随机漫步理论与巴菲特

 

https://www.jianshu.com/p/numpy_test  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/167028.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • django vue部署_如何远程连接

    django vue部署_如何远程连接Django+Vue实现WebSocket连接

  • 遗传算法的优化算法_粒子群算法和遗传算法的区别

    遗传算法的优化算法_粒子群算法和遗传算法的区别与遗传算法的第一次接触遗传算法的基本概念基本定义遗传算法的基本流程遗传算法过程中的具体操作参数的编码二进制编码Gray编码实数编码有序编码初始群体的设定适应度函数的计算遗传操作设计选择selection交叉crossover变异mutation控制参数的设定求解优化问题的实例问题描述问题分析算法设计个体编码适应值函数选择策略杂交算子变异算子参数设置

  • 自然语言处理中的N-Gram模型详解

    自然语言处理中的N-Gram模型详解N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度。这是模糊匹配中常用的一种手段。本文将从此开始,进而向读者展示N-Gram在自然语言处理中的各种powerful的应用。

  • LoadRunner 11 安装及激活成功教程

    LoadRunner 11 安装及激活成功教程注意事项:  安装前,把所有的杀毒软件和防火墙关闭。  若以前安装过LoadRunner,则将其卸载。  安装路径不要带中文字符。  如果系统为WIN7,旗舰版才能安装。  安装完毕,需激活成功教程

  • 数仓分层ods_跨境电商国内中转仓

    数仓分层ods_跨境电商国内中转仓一、ods层介绍1、保持数据原貌不做任何修改,起到备份数据的作用。2、数据采用LZO压缩,减少磁盘存储空间。100G数据可以压缩到10G以内。3、创建分区表,防止后续的全表扫描,在企业开发中大量使用分区表。4、创建外部表,在企业开发中,除了自己用的临时表,创建内部表外,绝大多数场景都是创建外部表。二、用户行为数据1、启动日志表ods_start_log//创建启动日志…

  • 高德定位SDK_高德地图api使用教程

    高德定位SDK_高德地图api使用教程1.LocationManagerProxy获取当前Context创建一个LocationManagerProxy变量mAMapLocManager=LocationManagerProx

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号