大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
灰色预测模型是通过少量的、不完全的信息,建立数学模型并作出预测的一种预测方法。
灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论。
灰色预测是对灰色系统所做的预测。目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。灰色预测模型所需建模信息少,运算方便,建模精度高,是处理小样本预测问题的有效工具。
灰色系统是黑箱概念的一种推广,我们把既含有已知信息又含有未知信息的系统称为灰色系统(占大多数)。作为两个极端,我们将信息完全未确定的系统称为黑色系统;信息完全确定系统称为白色系统。区别白色黑色系统的重要标志是系统各因素之间是否具有确定的关系。
灰色系统特点:
- 用灰色数学处理不确定量,使之量化。
- 充分利用已知信息寻求系统的运动规律。
- 灰色系统理论能处理贫信息系统。
灰色生成:是对原始数据的生成,是从杂乱无章的现象中去发现内在规律。
常用灰色系统生成方式:累加生成、累减生成、均值生成、级比生成等。
主要介绍累加生成:
预测值求解
计算后验差比:
代码如下:
function []=greymodel(y) % 本程序主要用来计算根据灰色理论建立的模型的预测值。 % 应用的数学模型是 GM(1,1)。 % 原始数据的处理方法是一次累加法。 y=input('请输入数据 '); n=length(y); yy=ones(n,1); yy(1)=y(1); for i=2:n yy(i)=yy(i-1)+y(i); end B=ones(n-1,2); for i=1:(n-1) B(i,1)=-(yy(i)+yy(i+1))/2; B(i,2)=1; end BT=B'; for j=1:n-1 YN(j)=y(j+1); end YN=YN'; A=inv(BT*B)*BT*YN; a=A(1); u=A(2); t=u/a; i=1:n+2; yys(i+1)=(y(1)-t).*exp(-a.*i)+t; yys(1)=y(1); for j=n+2:-1:2 ys(j)=yys(j)-yys(j-1); end x=1:n; xs=2:n+2; yn=ys(2:n+2); plot(x,y,'^r',xs,yn,'*-b'); det=0; sum1=0; sumpe=0; for i=1:n sumpe=sumpe+y(i); end pe=sumpe/n; for i=1:n; sum1=sum1+(y(i)-pe).^2; end s1=sqrt(sum1/n); sumce=0; for i=2:n sumce=sumce+(y(i)-yn(i)); end ce=sumce/(n-1); sum2=0; for i=2:n; sum2=sum2+(y(i)-yn(i)-ce).^2; end s2=sqrt(sum2/(n-1)); c=(s2)/(s1); disp(['后验差比值为:',num2str(c)]); if c<0.35 disp('系统预测精度好') else if c<0.5 disp('系统预测精度合格') else if c<0.65 disp('系统预测精度勉强') else disp('系统预测精度不合格') end end end disp(['下个拟合值为 ',num2str(ys(n+1))]); disp(['再下个拟合值为',num2str(ys(n+2))]);
效果如下:
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/166436.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...