pytest parametrize fixture_pytest参数化可变参数

pytest parametrize fixture_pytest参数化可变参数前言当某个接口中的一个字段,里面规定的范围为1-5,你5个数字都要单独写一条测试用例,就太麻烦了,这个时候可以使用pytest.mark.parametrize装饰器可以实现测试用例参数化。官方示

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

前言

当某个接口中的一个字段,里面规定的范围为1-5,你5个数字都要单独写一条测试用例,就太麻烦了,这个时候可以使用pytest.mark.parametrize装饰器可以实现测试用例参数化。
 

官方示例

下面是一个典型的范例,检查特定的输入所期望的输出是否匹配:

# test_expectation.py 
import pytest 

@pytest.mark.parametrize("test_input, expected", [("3+5", 8), ("2+4", 6), ("6*9", 42),]) 
def test_eval(test_input, expected): 
  assert eval(test_input) == expected

测试用例传参需要用装饰器@pytest.mark.parametrize,里面写两个参数

  • 第一个参数类型是字符串,多个参数中间用逗号隔开,这里填写的就是参数化的字段
  • 第二个参数类型是list,多组数据用元祖类型,这里填写的就是参数化的数据,通常我们把数据都会存放在yaml或者json文件中

装饰器@parametrize定义了三组不同的(test_input, expected)数据,test_eval则会使用这三组数据执行三次:

test_1.py::test_eval[3+5-8] 
test_1.py::test_eval[2+4-6] 
test_1.py::test_eval[6*9-42] PASSED                                       [ 33%]PASSED                                       [ 66%]FAILED                                      [100%]
test_1.py:10 (test_eval[6*9-42])
54 != 42

Expected :42
Actual   :54
<Click to see difference>

test_input = '6*9', expected = 42

    @pytest.mark.parametrize("test_input, expected", [("3+5", 8), ("2+4", 6), ("6*9", 42),])
    def test_eval(test_input, expected):
>       assert eval(test_input) == expected
E       assert 54 == 42

test_1.py:13: AssertionError

 

参数组合(笛卡尔积)

可以对一个函数使用多个parametrize的装饰器,这样多个装饰器的参数会组合进行调用:

import pytest 

@pytest.mark.parametrize("x", [0, 1]) 
@pytest.mark.parametrize("y", [2, 3]) 
def test_foo(x, y): 
  print("测试数据组合:x->%s, y->%s" % (x, y))

测试结果

collecting ... collected 4 items

test_example.py::test_foo[2-0] PASSED                                    [ 25%]测试数据组合:x->0, y->2

test_example.py::test_foo[2-1] PASSED                                    [ 50%]测试数据组合:x->1, y->2

test_example.py::test_foo[3-0] PASSED                                    [ 75%]测试数据组合:x->0, y->3

test_example.py::test_foo[3-1] PASSED                                    [100%]测试数据组合:x->1, y->3
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/166032.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • php 自带过滤和转义函数

    php 自带过滤和转义函数

    2021年10月22日
  • 基于JavaMail的Java邮件发送:复杂邮件发送

    基于JavaMail的Java邮件发送:复杂邮件发送本文链接:http://blog.csdn.net/xietansheng/article/details/51722660上一篇文章基于JavaMail的Java邮件发送:简单邮件发送讲解了邮件的基本协议,JavaMail组件,创建并发送一封简单邮件的详细步骤。本文将介绍如何创建并发送一封包含图片和附件的复杂邮件。一封复杂的邮件内容可以看做是由很多节点(或者可以说是“片段”…

  • 高斯同余理论_高斯模糊算法

    高斯同余理论_高斯模糊算法针对鲸鱼优化算法在处理高维问题时存在收敛速度慢、容易陷入局部最优和收敛精度低等问题,提出一种基于对数惯性权重和高斯差分变异的鲸群优化算法。通过高斯差分变异对鲸鱼位置更新方程进行变异,增加了种群多样性,提高了鲸群算法的全局搜索能力,防止早熟现象发生;将对数惯性权重引入搜寻猎物阶段,平衡全局搜索和局部开发能力,提高了算法寻优精度。通过测试函数优化实验对算法进行测试,实验结果表明,改进算法具有更高的寻优精度和更快的收敛速度。

  • Android加密之全盘加密

    Android加密之全盘加密Android加密之全盘加密前言Android的安全性问题一直备受关注,Google在Android系统的安全方面也是一直没有停止过更新,努力做到更加安全的手机移动操作系统。在Android的安全性方面,有很多模块:内核安全性应用安全性应用签名身份验证TrustyTEESELinux加密等等

  • pip卸载所有包_anaconda卸载与重装

    pip卸载所有包_anaconda卸载与重装安装和import时包的名称不一致时,比如scikit-learn和sklearn,卸载的时候还是应该用包的全称,也就是与安装时一致用pip安装的就要用pip卸载,而不是conda,反之亦然

    2022年10月19日
  • 26-黑马程序员——OC 语言学习笔记— Foundation01

    26-黑马程序员——OC 语言学习笔记— Foundation01

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号