多进程 python_Python 多进程

多进程 python_Python 多进程进程前置知识点进程:一个程序运行起来后,代码+用到的资源称之为进程,它是操作系统分配资源的基本单元。并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

进程

 

前置知识点

  • 进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。
  • 并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任务“一起”执行(实际上总有一些任务不在执行,因为切换任务的速度相当快,看上去一起执行而已)
  • 并行:指的是任务数小于等于cpu核数,即任务真的是一起执行的
     

进程的创建

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情

from multiprocessing import Process
import os


# 子进程要执行的代码
def run_proc(name):
    print('启动子进程{}{}'.format(name, os.getpid()))


if __name__ == '__main__':
    print('父进程{}'.format(os.getpid()))
    p = Process(target=run_proc, args=('test',))
    print('子进程将要启动')
    p.start()
    p.join()
    print('子进程结束')

 

进程pid

from multiprocessing import Process
import os
import time


def run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')


if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()

>>> 父进程pid: 3580
>>> 子进程运行中,pid=3581...
>>> 子进程将要结束...

 

Process语法结构

Process([group [, target [, name [, args [, kwargs]]]]])
  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码(常用)
  • args:给target指定的函数传递的参数,以元组的方式传递(常用)
  • kwargs:给target指定的函数传递命名参数
  • name:给进程设定一个名字,可以不设定
  • group:指定进程组,大多数情况下用不到

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)
  • is_alive():判断进程子进程是否还在活着
  • join([timeout]):是否等待子进程执行结束,或等待多少秒
  • terminate():不管任务是否完成,立即终止子进程

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid:当前进程的pid(进程号)
     

给子进程指定的函数传递参数

from multiprocessing import Process
import os
from time import sleep


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}
>>> 子进程运行中,name= test,age=18 ,pid=3593...
>>> {'m': 20}

 

进程和线程的区别

  • 进程是资源调度的基本单位,而线程是程序执行的基本单位
  • 不同进程的地址空间是独立的,而同一进程中的线程之间共享
  • 进程之间通信必须使用操作系统提供的进程间通信机制,同一进程中的各线程可以直接通信
  • 多进程之间可以并发执行,多线程之间也可以并发执行
  • 线程切换的开销要比进程切换的开销小
     

进程间通信

如果两个进程之间需要通信,则需要用到Queue类,相当于队列
 

初始化Queue()对象

q = Queue()

括号中可以指定最大可接受的消息数量,若不指定,则默认代表消息数量没有上限
 

Queue()类的方法

Queue有多个方法,下面介绍几个常用的方法
 

Queue.qsize()

返回当前队列包含的消息数量;
 

Queue.empty()

判断队列是否为空,如果队列为空,返回True,反之False
 

Queue.full()

判断队列是否满了,如果队列满了,返回True,反之False
 

Queue.get([block[, timeout]])

获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
block=True的情况
如果block=True,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止
如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出Queue.Empty异常;
block=False的情况
如果block=False,消息列队如果为空,则会立刻抛出Queue.Empty异常;
 

Queue.get_nowait()

相当Queue.get(False)
 

Queue.put(item,[block[, timeout]])

将item消息写入队列,block默认值为True
block=True的情况
如果block=True,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止
如果设置了timeout,则会等待timeout秒,若还没空间,则抛出Queue.Full异常;
block=False的情况
如果block=False,消息列队如果没有空间可写入,则会立刻抛出Queue.Full异常;
 

Queue.put_nowait(item)

相当Queue.put(item, False)
 

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random


# 写数据进程执行的代码:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())


# 读数据进程执行的代码:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)


if __name__ == '__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

 

进程池

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

"""
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
"""
from multiprocessing import Pool
import os, time, random


def long_time_task(name):
    print('运行任务 %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('任务 %s 运行 %0.2f 秒' % (name, (end - start)))


if __name__ == '__main__':
    print('父进程 %s.' % os.getpid())
    p = Pool(4)  # 创建进程池中最多存4个子进程
    for i in range(5):
          # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
          # 每次循环将会用空闲出来的子进程去调用目标
        p.apply_async(long_time_task, args=(i,))
    print('等待所有子进程完成...')
    p.close()  # 关闭进程池,关闭后po不再接收新的请求
    p.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
    print('所有子进程完成.')
# 运行结果
>>> 等待所有子进程完成...
>>> 运行任务 0 (3722)...
>>> 运行任务 1 (3723)...
>>> 运行任务 2 (3724)...
>>> 运行任务 3 (3725)...
>>> 任务 3 运行 0.67 秒
>>> 运行任务 4 (3725)...
>>> 任务 2 运行 1.29 秒
>>> 任务 0 运行 2.00 秒
>>> 任务 1 运行 2.77 秒
>>> 任务 4 运行 2.31 秒
>>> 所有子进程完成.

 

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close():关闭Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
     

代码解读:

Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。
请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。如果改成:

p = Pool(5)

就可以同时跑5个进程。
由于Pool的默认大小是CPU的核数,如果你不幸拥有8核CPU,你要提交至少9个子进程才能看到上面的等待效果。
 

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

# 修改import中的Queue为Manager
from multiprocessing import Manager,Pool
import os,time,random

def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())
>>> (4157) start
>>> writer启动(4159),父进程为(4157)
>>> reader启动(4160),父进程为(4157)
>>> reader从Queue获取到消息:i  
>>> reader从Queue获取到消息:t
>>> reader从Queue获取到消息:c
>>> reader从Queue获取到消息:a
>>> reader从Queue获取到消息:s
>>> reader从Queue获取到消息:t
>>> (4157) End
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/165494.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ASPCMS_net开源项目

    ASPCMS_net开源项目1.We7CMS【做的还不错,需要保留版权】We7CMS是由西部动力开发的一款充分发掘互联网Web2.0(如博客、RSS等)的信息组织优势,将其理念利用到政府企事业网站的构建、组织、管理中的网站建设和管理方面的产品。系统目标:叫创建网站变成一种简单的艺术创作,简单如创建博客。系统特点简单至上;“一看就会”是我们的创作理念,如果在哪里您看了不会用,请您告诉我们。潜力无限;来自

  • Intent.FLAG_ACTIVITY_NEW_TASK|FLAG_ACTIVITY_CLE…「建议收藏」

    Intent.FLAG_ACTIVITY_NEW_TASK|FLAG_ACTIVITY_CLE…「建议收藏」Intent.FLAG_ACTIVITY_NEW_TASK如果将intent设置这一项就会从历史队列中独立出来,生成一个新的activity的队列。FLAG_ACTIVITY_CLEAR_TOP就会将新站第一个activity在原来队列中位于他上面的activity都清空。例如有四个activityABCD,他们中都有一个按钮,按a的按钮会跳到b,b->c,c->d,d->b,如果acti

  • 电阻色环表色环电阻识别表_电阻的色环识别方法

    电阻色环表色环电阻识别表_电阻的色环识别方法色环电阻色环电阻是电子电路中最常用的电子元件,色环电阻就是在普通的电阻封装上涂上不一样的颜色的色环,用来区分电阻的阻值。保证在安装电阻时不管从什么方向来安装,都可以清楚的读出它的阻值。色环电阻的基本单位有:欧姆(Ω)、千欧(KΩ)、兆欧(MΩ)。1兆欧(MΩ)=1000千欧(KΩ)=1000000欧(Ω)。平常使用的色环电阻可以分为四环和五环,通常用四环。其中四环电阻前二环为数字,第三环表

  • easyui出口excel无法下载框弹出的办法来解决

    easyui出口excel无法下载框弹出的办法来解决

  • linux系统怎么数据恢复,linux系统数据恢复

    linux系统怎么数据恢复,linux系统数据恢复程序员的误操作造成数据丢失,忙着一个星期的项目,就这样付之东流了。老板的痛斥、经理的训斥接踵而来。接下来就是没休息、加班,甚至忙到凌晨都不能离开那该死的电脑,都有种想屎的感觉呢?为那些不喜欢备份数据的朋友带来了福音,我们来谈谈数据恢复,这里我们来手把手地教会你如何利用简单的工具来恢复被你删除的数据。工具:hexedit、fdisk下文内容操作均在root环境下完成。hexedit:在linux上…

  • 时序数据库介绍_时序数据库公司

    时序数据库介绍_时序数据库公司首先,什么是时序数据? ​ 简单来说,时序数据就是按照时间维度索引的数据,比如车辆轨迹数据,传感器温度数据。随着物联网时代的到来,时序数据的数据量呈井喷式爆发,针对于这一数据细分的优化存储显得越来越重要。01什么是InfluxDBInfluxDB是一个开源的、高性能的时序型数据库,在时序型数据库DB-EnginesRanking上排名第一。在介绍InfluxDB之前,先来介绍下时序数据。按照时间顺序记录系统、设备状态变化的数据被称为时序数据(TimeSeriesData),如.

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号