Modbus 通讯协议 (RTU传输模式)「建议收藏」

Modbus 通讯协议 (RTU传输模式)「建议收藏」第一章Modbus协议简介Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,

大家好,又见面了,我是你们的朋友全栈君。

注:( 2020.05.22 )

GB/T 19582.2-2008 《基于Modbus协议的工业自动化网络规范 第1部分:Modbus协议在串行链路上的实现指南》

 

1、对于modbus ASCII 模式,使用的是高位字节在前,低位字节在后。使用LRC校验。

 

2、对于modbus rtu 模式,使用的是低位字节在前,高位字节在后。使用CRC校验。

 

 

 

 

第一章          Modbus协议简介

 

Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。

此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。

当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。

协议在一根通讯线上使用应答式连接(半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,在相反的方向上终端设备发出的应答信号传输给主机。 协议只允许在主计算机和终端设备之间,而不允许独立的设备之间的数据交换,这就不会在使它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。

 

1. 1  传输方式

传输方式是一个信息帧内一系列独立的数据结构以及用于传输数据的有限规则,以RTU模式在Modbus总线上进行通讯时,信息中的每8位字节分成2个4位16进制的字符,每个信息必须连续传输下面定义了与Modebus 协议– RTU方式相兼容的传输方式。

代码系统

·   8位二进制,十六进制数0…9,A…F

·   消息中的每个8位域都是一个两个十六进制字符组成

每个字节的位

·   1个起始位

·   8个数据位,最小的有效位先发送

·   1个奇偶校验位,无校验则无

·   1个停止位(有校验时),2个Bit(无校验时)

错误检测域

·   CRC(循环冗长检测)

1.2      协议

信息帧到达终端设备时,它通过一个简单的“口”进入寻址到的设备,该设备去掉数据帧的“信封”(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将自己生成的数据加入到取得的“信封”中,把数据帧返回给发送者。返回的响应数据中包含了以下内容:终端从机地址(Address)、被执行了的命令(Function)、执行命令生成的被请求数据(Data)和一个校验码(Check)。发生任何错误都不会有成功的响应。

1.2.1          信息帧

Address

Function

Data

Check

8-Bits

8-Bits

N x 8-Bits

16-Bits

图 1 – 1 . 信息帧格式

特注:Modbus信息帧所允许的最大长度为256个字节,即N的范围是大于等于零且小于等于252(N{0,252})。

即,所有的数据一共256个,数据剩下253个。

1.2.2          地址(Address)域

信息帧地址域(信息地址)在帧的开始部分,由8位组成,有效的从机设备地址范围0-247(十进制),各从机设备的寻址范围为1-247。主机把从机地址放入信息帧的地址区,并向从机寻址。从机响应时,把自己的地址放入响应信息的地址区,让主机识别已作出响应的从机地址。

地址0广播地址,所有从机均能识别。当Modbus协议用于高级网络时,则不允许广播或其它方式替代。

1.2.3          功能(Function)域

  信息帧功能域代码告诉了被寻址到的终端执行何种功能。有效码范围1-225(十进制) ,有些代码是适用于所有控制器,有些适应于某种控制器,还有些保留以备后用。有关功能代替码的全部内容见附录A

当主机向从句发送信息时,功能代码向从机说明应执行的动作。如读一组离散式线圈或输入信号的ON/OFF状态,读一组寄存器的数据,读从机的诊断状态,写线圈(或寄存器),允许下截、记录、确认从机内的程序等。当从机响应主机时,功能代码可说明从机正常响应或出现错误(即不正常响应),正常响应时,从句简单返回原始功能代码;不正常响应时,从机返回与原始代码相等效的一个码,并把最高有效位设定为“1”。

如,主机要求从机读一组保持寄存器时,则发送信息的功能码为:

0000 0011 (十六进制03)

若从机正确接收请求的动作信息后,则返回相同的代码值作为正常响应。发现错时,则返回一个不正常响信息:

1000 0011(十六进制83)

从机对功能代码作为了修改,此外,还把一个特殊码放入响应信息的数据区中,告诉主机出现的错误类型和不正常响应的原因,不正常响应见附录B。主机设备的应用程序负责处理不正常响应,典型处理过程是主机把对信息的测试和诊断送给从机,并通知操作者。表 1 – 1列出了所有设备常用的功能码、它们的意义及它们的初始功能。

表 1 – 1 常用功能码

代码

名称

作用

01

读取线圈状态

取得一组逻辑线圈的当前状态(ON/OFF)

02

读取输入状态

取得一组开关输入的当前状态(ON/OFF)

03

读取保持寄存器

在一个或多个保持寄存器中取得当前的二进制值

04

读取输入寄存器

在一个或多个输入寄存器中取得当前的二进制值

05

强置单线圈

强置一个逻辑线圈的通断状态

06

预置单寄存器

放置一个特定的二进制值到一个单寄存器中

07

读取异常状态

取得8个内部线圈的通断状态

15

强置多线圈

强置一串连续逻辑线圈的通断

16

预置多寄存器

放置一系列特定的二进制值到一系列多寄存器中

17

报告从机标识

可使主机判断编址从机的类型及该从机运行指示灯的状态

1.2.4          数据域

数据域包含了终端执行特定功能所需要的数据或者终端响应查询时采集到的数据。这些数据的内容可能是数值、参考地址或者极限值。他由数据区有2个16进制的数据位(2的8次方256),数据范围为00-FF(16进制)。例如:功能域码告诉终端读取一个寄存器数据域则需要指明从哪个寄存器开始及读取多少个数据,内嵌的地址和数据依照类型和从机之间的不同能力而有所不同。若无错误出现,从机向主机的响应信息中包含了请求数据,若有错误出现,则数据中有一个不正常代码,使主机能判断并作出下一步的动作。数据区的长度可为“零”以表示某类信息。

1.2.5          错误校验域

该域允许主机和终端检查传输过程中的错误。有时,由于电噪声和其它干扰,一组数据在从一个设备传输到另一个设备时在线路上可能会发生一些改变,出错校验能够保证主机或者终端不去响应那些传输过程中发生了改变的数据,这就提高了系统的安全性和效率,出错校验使用了16位循环冗余的方法,即CRC校验。

错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。故CRC的高位字节是发送消息的最后一个字节。

1.2.6          字符的连续传输

当消息在标准的Modbus系列网络传输时,每个字符或字节按由左到右的次序方式发送:

最低有效位(LSB)…最高有效位(MSB)。

位的序列是:

有奇偶校验

启始位

1

2

3

4

5

6

7

8

奇偶位

停止位

无奇偶校验

启始位

1

2

3

4

5

6

7

8

停止位

停止位

图 1 –2 .  位顺序(RTU)

1.3   错误检测

1、奇偶校验

用户可以配置控制器是奇或偶校验,或无校验。这将决定了每个字符中的奇偶校验位是如何设置的。

如果指定了奇或偶校验,“1”的位数将算到每个字符的位数中(ASCII模式7个数据位,RTU中8个数据位)。例如RTU字符帧中包含以下8个数据位:1 1 0 0 0 1 0 1

整个“1”的数目是4个。如果便用了偶校验,帧的奇偶校验位将是0,便得整个“1”的个数仍是4个。如果便用了奇校验,帧的奇偶校验位将是1,便得整个“1”的个数是5个。

如果没有指定奇偶校验位,传输时就没有校验位,也不进行校验检测。代替一附加的停止位填充至要传输的字符帧中。

2、CRC检测

RTU方式时,采用CRC方法计算错误校验码,CRC校验传送的全部数据。它忽略信息中单个字符数据的奇偶校验方法。

循环冗余校验(CRC)域占用两个字节,包含了一个16位的二进制值。CRC值由传送设备计算出来,然后附加到数据帧上,接收设备在接收数据时重新计算CRC值,然后与接收到的CRC域中的值进行比较,如果这两个值不相等,就发生了错误。

CRC开始时先把寄存器的16位全部置成“1”,然后把相邻2个8位字节的数据放入当前寄存器中,只有每个字符的8位数据用作产生CRC,起始位,停止位和奇偶校验位不加到CRC中。

       在生成CRC时,每个8位字节与寄存器中的内容进行异或,然后将结果向低位移位,高位则用“0”补充,最低位(LSB)移出并检测,如果是1,该寄存器就与一个预设的固定值进行一次异或运算,如果最低位为0,不作任何处理。

       上述处理重复进行,知道执行完了8次移位操作,当最后一位(第8位)移完以后,下一个8位字节与寄存器材的当前值进行异或运算,同样进行上述的另一个8次移位异或操作,当数据帧中的所有字节都作了处理,生成的最终值就是CRC值。

生成一个CRC的流程为:

1、       预置一个16位寄存器为0FFFFH(全1),称之为CRC寄存器。

2、       把数据帧中的第一个8位字节与CRC寄存器中的低字节进行异或运算,结果存回CRC寄存器。

3、       将CRC寄存器向右移一位,最高位填以0,最低位移出并检测。

4、       如果最低位为0:重复第3步(下一次移位)。

 如果最低位为1:将CRC寄存器与一个预设的固定值(0A001H)进行异或运算。

5、       重复第3步和第4步直到8次移位。这样处理完了一个完整的八位。

6、       重复第2步到第5步来处理下一个八位,直到所有的字节处理结束。

7、       最终CRC寄存器得值就是CRC的值。

CRC值附加到信息时,低位在先,高位在后。查阅附录C中的一个实例,它详细说明了CRC的校验。

第二章  Modbus数据和控制功能详解

       Modbus信息中的所有数据地址以零作为基准,各项数据的第一个数据地址的编号为0。若无特殊说明在此节文中用+进制值表示,图中的数据区则用十六进制表示

图2–1为一个例子,说明了Modbus的查询信息,图2–2为正常响应的例子,这两例子中的数据均是16进制的,也表示了以RTU方式构成数据帧的方法。

主机查询是读保持寄存器,被请求的从机地址是06,读取的数据来自地址40108保持寄有器。注意,该信息规定了寄存器的起始地址为0107 (006BH)。

从机响应返回该功能代码,说明是正常响应,字节数“Byle count”中说明有多少个8位字节被返回。它表明了附在数据区中8位字节的数量,当在缓冲区组织响应信息时,“字节数”区域中的值应与该信息中数据区的字节数相等。如RTU方式时,63H 用一个字节(01100011)发送。8个位为一个单位计算“字节数”,它忽略了信息帧用组成的方法。

 

Addr

Fun

Data start reg hi

Data start reg lo

Data #of regs hi

Data #of regs lo

CRC16

hi

CRC16

lo

06H

03H

00H

6BH

00H

01H

XXH

XXH

图 2 – 1 Modbus的查询信息

Addr

Fun

Byte

count

Data1

hi

Data1

Lo

Data 2

hi

Data2

lo

Data3

hi

Data3

lo

CRC16

hi

CRC16

lo

06H

03H

06H

02H

2BH

00H

00H

00H

63H

XXH

XXH

图 2 – 2 Modbus的响应信息

2.1  读取线圈状态(功能码01)

读取从机离散量输出口(DO,0X类型)的 ON/OFF 状态,不支持广播。

查询   

查询信息规定了要读的起始线圈和线圈量,线圈的起始地址为0000H,1-16个线圈的寻址地址分为0000H –0015H(DO1=0000H,DO2=0001H,依此类推)。

       图 2 – 3 的例子是从地址为17的从机读取DO1至DO6的状态。

Addr

Fun

DO start reg hi

DO start reg lo

DO #of regs hi

DO #of regs lo

CRC16

hi

CRC16

lo

11H

01H

00H

00H

00H

06H

XXH

XXH

图 2 – 3 读取线圈状态—-查询

        响应

  响应信息中的各线圈的状态与数据区的每一位的值相对应,即每个DO占用一位(1 = ON, 0= OFF),第一个数据字节的LSB为查询中的寻址地址,其他的线圈按顺序在该字节中由低位向高位排列,直至8个为止,下一个字节也是从低位向高位排例。若返回的线圈数不是8的倍数,则在最后的数据字节中的剩余位至字节的最高位全部填0,字节数区说明全部数据的字节数。

图2 – 4所示为线圈的输出状态响应的实例。

Addr

Fun

Byte count

Data

CRC16  hi

CRC16  lo

11H

01H

01H

2AH

XXH

XXH

       

     数据

0

0

0

0

0

0

DO2

DO1

MSB

7

6

5

4

3

2

LSB

图 2 – 4读取线圈状态—-响应

2.2  读取输入状态(功能码02)

读取从机离散量输入信号(DI,0X类型)的ON/OFF状态,不支持广播。

查询

查询信息规定了要读的输入起始地址,以及输入信号的数量。输入的起始地址为0000H,1-16个输入口的地址分别为0-15(DO1=0000H,DO2=0001H,依此类推)。

图 2 – 5 的例子是从地址为17的从机读取DI1到DI16的状态。

 

Addr

Fun

DI start

addr  hi

DI start

addr  lo

DI num

hi

DI num

lo

CRC16

hi

CRC16

lo

11H

02H

00H

00H

00H

10H

XXH

XXH

图 2 – 5读取输入状态—-查询

响应

       响应信息中的各输入口的状态,分别对应于数据区中的每一位值,1 = ON; 0 = OFF,第一个数据字节的LSB为查询中的寻址地址,其他输入口按顺序在该字节中由低位向高位排列,直至8个位为止。下一个字节中的8个输入位也是从低位到高位排列。若返回的输入位数不是8的倍数,则在最后的数据字节中的剩余位直至字节的最高位全部填零。字节数区说明了全部数据的字节数。

图2 – 6 所示为读数字输出状态响应的实例。

Addr

Fun

Byte count

Data1

Data2

CRC16 hi

CRC16 lo

11H

02H

02H

33H

CCH

XXH

XXH

数据 1

 DI8

 DI7

 DI6

 DI5

 DI4

 DI3

 DI2

 DI1

       MSB                                       LSB  

数据 2

 DI16

 DI15

 DI14

 DI13

 DI12

 DI11

 DI10

 DI9

    MSB                                             LSB  

图 2 – 6读取输入状态—-响应

2.3  读取保持寄存器(功能码03)

读取从机保持寄存器(4X类型)的二进制数据,不支持广播。

查询

查询信息规定了要读的保持寄存器起始地址及保持寄存器的数量,保持寄存器寻址起始地址为0000H,寄存器1-16所对应的地址分别为0000H –0015H。

图2 – 7 的例子是从17号从机读3个采集到的基本数据U1、U2、U3,U1的地址为0000H, U2的地址为0001H,U3的地址为0002H。

Addr

Fun

Data start

addr  hi

Data start

addr lo

Data #of

regs hi

Data #of

regs lo

CRC16

hi

CRC16

lo

11H

03H

00H

00H

00H

03H

XXH

XXH

图 2 – 7读取保持寄存器—-查询

响应

响应信息中的寄存器数据为二进制数据,每个寄存器分别对应2个字节,第一个字节为高位值数据,第二个字节为低位数据。

图 2 – 8的例子是读取U1,U2,U3(U1=03E8H,U2=03E7H,U3=03E9H)的响应。

Addr

Fun

Byte

count

Data1

hi

Data1

Lo

Data 2

hi

Data2

lo

Data3

hi

Data3

lo

CRC16

hi

CRC16

lo

11H

03H

06H

03H

E8H

03H

E7H

03H

E9H

XXH

XXH

图 2 – 8读取保持寄存器—-响应

2.4   读取输入寄存器(功能码04)

读取从机输入寄存器(3X类型)中的二进制数据,不支持广播。

查询

查询信息规定了要读的寄存器的起始地址及寄存器的数量,寻止起始地址为0,寄存器1-16所对应的地址分别为0000H –0015H。

图 2 – 9的例子是请求17号从机的0009寄存器。

Addr

Fun

DO addr

hi

DO addr

lo

Data #of

regs hi

Data #of

regs lo

CRC16

hi

CRC16

lo

11H

04H

00H

08H

00H

01H

XXH

XXH

图 2 – 9读取输入寄存器—-查询

响应

响应信息中的寄存器数据为每个寄存器分别对应2个字节,第一个字节为高位数据,第二个字节为低位数据。

图 2 – 10的例子寄存器30009中的数据用000AH 2个字节表示。

Addr

Fun

Byte

count

Data

hi

Data

Lo

CRC16

hi

CRC16

lo

11H

04H

02H

00H

0AH

XXH

XXH

图 2 – 10读取输入寄存器—-响应

2.5   强置单线圈(功能码05)

强制单个线圈(DO,0X类型)为ON或OFF状态,广播时,该功能可强制所有从机中同一类型的线圈均为ON或OFF状态。

该功能可越过控制器内存的保护状态和线圈的禁止状态。线圈强制状态一直保持有效直至下一个控制逻辑作用于线圈为止。控制逻辑中无线圈程序时,则线圈处于强制状态。

查询

查询信息规定了需要强制一个单独线圈的类型,线圈的起始地址为0000H,1-16个线圈的寻址地址分为0000H –0015H(DO1=0000H,DO2=0001H,依此类推)。

由查询数据区中的一个常量,规定被请求线圈的ON/OFF状态, FF00H值请求线圈处于ON状态,0000H值请求线圈处于OFF状态,其它值对线圈无效,不起作用。

图示 2-11的例子是请求17号从机开DO1的On状态。

 

Addr

Fun

DO addr

hi

DO addr

lo

Value

hi

Value

lo

CRC16

hi

CRC16

lo

11H

05H

00H

00H

FFH

00H

XXH

XXH

图示 2-11强制单线圈—-查询

响应

图2 – 12所示为对这个命令请求的正常响应是在DO状态改变以后传送接收到的数据。

 

Addr

Fun

DO addr

hi

DO addr

lo

Value

hi

Value

lo

CRC16

hi

CRC16

lo

11H

05H

00H

00H

FFH

00H

XXH

XXH

图示 2-12强制单线圈—-响应

2.6 预置单寄存器(功能码06)

把一个值预置到一个保持寄存器(4X类型)中,广播时,该功能把值预置到所有从机的相同类型的寄存器中

该功能可越过控制器的内存保护。使寄存器中的预置值保持有效。只能由控制器的下一个逻辑信号来处理该预置值。若控制逻辑中无寄存器程序时,则寄存器中的值保持不变。

查询

       查询信息规定了要预置寄存器的类型,寄存器寻址起始地址为0000H,寄存器1所对应的地址为0000H。

       图示 2-13的例子是请求17号从机0040H.的值为2717。

Addr

Fun

Data start

reg  hi

Data start

   reg lo

Value

  hi

Value    

  lo

CRC

  hi

CRC

  lo

 11H

06H

   00H

   40H

  0AH

 9DH

 XXH

 XXH

图示 2-13预设单寄存器—-查询

响应

图2 – 14所示对于预置单寄存器请求的正常响应是在寄存器值改变以后将接收到的数据传送回去。

Addr

Fun

Data start

reg  hi

Data start

   reg lo

Value

  hi

Value    

  lo

CRC

  hi

CRC

  lo

 11H

06H

   00H

   40H

  0AH

 9DH

 XXH

 XXH

图示 2-14预设单寄存器—-响应

2.7读取异常状态(功能码7)

读从中机中8个不正常状态线圈的数据,某些线圈号已在不同型号的控制器中预定义,而其它的线圈由用户编程,作为有关控制器的状态信息,如“machine ON/OFF”,“heads retraced”,(缩回标题),“safeties satisfied”(安全性满意),“errorconditions”(存在错误条件)或其它用户定义的标志等。该功能码不支持广播。

该功能代码为存取该类信息提供了一种简单的方法,不正常线圈的类型是已知的(在功能代码中不需要线圈类型) 预定义的不正常线圈号如下:

控制器型号                 线圈                 设定

M84,184/384,584,984           1-8                    用户定义

484                          257                  电池状态

                                          258-264             用户定义

         884                          761                   电池状态

                                          762                   内存保护状态

                                          763                   R10工况状态

                                   764-768         用户预定义

查询     

       图示 2-15的例子是请求读从机设备17中的不正常状态。

Addr

Fun

CRC16  hi

CRC16  lo

11H

07H

XXH

XXH

图示 2-15读取异常状态—-查询

响应

正常响应包含 8 个不正常的线圈状态,为一个数据字节,每个线圈一位。LSB对应为最低线圈类型的状态。

图2 – 16所示按查询要求返回响应:

Addr

Fun

DO Data

CRC16  hi

CRC16  lo

11H

07H

6DH

XXH

XXH

图示 2-16读取异常状态—-响应

该例子中,线圈数据为 6DH (二进制0110 ,1101),从左到右 (最高位至最低位) 的线圈状态分别为: OFF – ON – ON – OFF – ON –ON – OFF – ON。若控制器型号为 984,这些位表示线圈 8 至 1 的状态;若控制器型号为 484 则表示线圈 264 至 257 的状态。

2.8 强置多线圈(功能码15)

按线圈的顺序把各线圈 (DO,0X 类型) 强制成 ON 或 OFF。广播时,该功能代码可对各从机中相同类型的线圈起强制作用。

该功能代码可越过内存保护和线圈的禁止状态线圈。保持强制状态有效,并只能由控制器的下一个逻辑来处理。若无线圈控制逻辑程序时,线圈将保持强制状态。

查询

查询信息规定了被强制线圈的类型,线圈的起始地址为0000H,1-16个线圈的寻址地址分为0000H –0015H(DO1=0000H,DO2=0001H,依此类推)。

查询数据区规定了被请求线圈的 ON/OFF 状态,如数据区的某位值为“1”表示请求的相应线圈状态为ON,位值为“0”,则为OFF状态。

图示 2-17例子为请求从机设备 17 中一组 10 个线圈为强制状态,起始线圈为 20 (则寻址地址为 19 或 13H),查询的数据为 2 个字节,CD01H (二进制 11001101 0000 0001) 相应线圈的二进制位排列如下:

Bit:

1

1

0

0

1

1

0

1

0

0

0

0

0

0

0

1

Coll:

27

26

25

24

23

22

21

20

29

28

传送的第一个字节 CDH 对应线圈为 27-20,  LSB 对应线圈 20,传送的第二个字节为 01H,对应的线圈为 29-28, LSB 为继圈 28,其余未使用的位均填“0”。

Addr

Fun

DO addr

hi

DO addr

lo

Data #of

 reg  hi

Data #of

 reg lo

Byte   

count      

Value

  hi

Value

 lo

CRC

  hi

CRC

  lo

 11H

0FH

   00H

   13H

   00H

   0AH

  02H

 CDH

 01H

 XXH

 XXH

图示 2-17强置多线圈—-查询

响应

正常响应返回从机地址,功能代码,起始地址以及强制线圈数。

图2 – 18对上述查询返回的响应。

Addr

Fun

DO addr

hi

DO addr

lo

Data #of

reg  hi

Data #of

reg lo

CRC16

hi

CRC16

lo

11H

0FH

00H

13H

00H

0AH

XXH

XXH

图示 2-18强置多线圈—-响应

2.9预置多寄存器(功能码16)

把数据按顺序预置到各 (4X类型) 寄存器中,广播时该功能代码可把数据预置到全部从机中的相同类型的寄存器中。

该功能代码可越过控制器的内存保护,在寄存器中的预置值一直保持有效,只能由控制器的下一个逻辑来处理寄存器的内容,控制逻辑中无该寄存器程序时,则寄存器中的值保持不变。

查询

       查询信息规定了要预置寄存器的类型,寄存器寻址起始地址为0000H,寄存器1所对应的地址为0000H。

       图示 2-19的例子是请求17号从机0040H.的值为178077833。

Addr

Fun

Data start

reg  hi

Data start

   reg lo

Data #of

 reg  hi

Data #of

 reg lo

Byte   

count      

Value

  hi

Value

 lo

Value

  hi

Value    

  lo

CRC

  hi

CRC

  lo

 11H

10H

   00H

   40H

   00H

   02H

  04H

 40H

 89H

  0AH

 9DH

 XXH

 XXH

图示 2-19预设多寄存器—-查询

响应

图2 – 20所示对于预置单寄存器请求的正常响应是在寄存器值改变以后将接收到的数据传送回去。

Addr

Fun

Data start

reg  hi

Data start

reg lo

Data #of

reg  hi

Data #of

reg lo

CRC16

hi

CRC16

lo

11H

10H

00H

40H

00H

02H

XXH

XXH

图示 2-20预设多寄存器—-响应

2.10报告从机标识(功能码17)

返回一个从机地址控制器的类型,从机的当前状态,以及有关从机的其他说明,不支持广播。

查询

              图示 2-21的例子是请求报告从机设备 17 的 标识ID 和状态。

Addr

Fun

CRC16  hi

CRC16  lo

11H

11H

XXH

XXH

图示 2-21报告从机标识—-查询

响应

图2 – 22所示正常响应格式,数据内容对应每台控制器的类型。

Addr

Fun

Byte

Count

Slave ID

Run Indicator Status

Additfional

Data

CRC16

hi

CRC16

lo

11H

11H

XXH

XXH

XXH

XXH

XXH

XXH

图示 2-22报告从机标识—-响应

从机 ID 总结

数据区第一个字节为 Modicon 控制器返回的从机 ID

Slave ID               Controller

0                                                    Micro 84

1                                                    484

2                                                    184/384

3                                                    584

8                    884

9                    984

特注:详细信息见Modbus协议英文版或中文版。

第三章  附录

附录A:MODBUS全部功能码

ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或局部专用线路连接而成。其系统结构既包括硬件、亦包括软件。它可应用于各种数据采集和过程监控。下表3–1是ModBus的功能码定义。

表3–1 ModBus功能码

功能码

名称

作用

01

读取线圈状态

取得一组逻辑线圈的当前状态(ON/OFF)

02

读取输入状态

取得一组开关输入的当前状态(ON/OFF)

03

读取保持寄存器

在一个或多个保持寄存器中取得当前的二进制值

04

读取输入寄存器

在一个或多个输入寄存器中取得当前的二进制值

05

强置单线圈

强置一个逻辑线圈的通断状态

06

预置单寄存器

把具体二进值装入一个保持寄存器

07

读取异常状态

取得8个内部线圈的通断状态,这8个线圈的地址由控制器决定,用户逻辑可以将这些线圈定义,以说明从机状态,短报文适宜于迅速读取状态

08

回送诊断校验

把诊断校验报文送从机,以对通信处理进行评鉴

09

编程(只用于484)

使主机模拟编程器作用,修改PC从机逻辑

10

控询(只用于484)

可使主机与一台正在执行长程序任务从机通信,探询该从机是否已完成其操作任务,仅在含有功能码9的报文发送后,本功能码才发送

11

读取事件计数

可使主机发出单询问,并随即判定操作是否成功,尤其是该命令或其他应答产生通信错误时

12

读取通信事件记录

可是主机检索每台从机的ModBus事务处理通信事件记录。如果某项事务处理完成,记录会给出有关错误

13

编程(184/384 484 584)

可使主机模拟编程器功能修改PC从机逻辑

14

探询(184/384 484 584)

可使主机与正在执行任务的从机通信,定期控询该从机是否已完成其程序操作,仅在含有功能13的报文发送后,本功能码才得发送

15

强置多线圈

强置一串连续逻辑线圈的通断

16

预置多寄存器

把具体的二进制值装入一串连续的保持寄存器

17

报告从机标识

可使主机判断编址从机的类型及该从机运行指示灯的状态

18

(884和MICRO 84)

可使主机模拟编程功能,修改PC状态逻辑

19

重置通信链路

发生非可修改错误后,是从机复位于已知状态,可重置顺序字节

20

读取通用参数(584L)

显示扩展存储器文件中的数据信息

21

写入通用参数(584L)

把通用参数写入扩展存储文件,或修改之

22~64

保留作扩展功能备用

 

65~72

保留以备用户功能所用

留作用户功能的扩展编码

73~119

非法功能

 

120~127

保留

留作内部作用

128~255

保留

用于异常应答

ModBus网络只是一个主机,所有通信都由他发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。表3–2是ModBus各功能码对应的数据类型。

表3–2 ModBus功能码与数据类型对应表

代码

功能

数据类型

01

02

03

整型、字符型、状态字、浮点型

04

整型、状态字、浮点型

05

06

整型、字符型、状态字、浮点型

08

N/A

重复“回路反馈”信息

15

16

整型、字符型、状态字、浮点型

17

字符型

附录B:不正常响应

不正常响应:

除广播外,主机向从机设备发送查询并希望有一个正常响应,主机查询中有可能产生4种事件:

¨  从机接收查询,通讯错误正常处理信息,则返回一个正常响应事件。

¨  由于通讯出错,从机不能接收查询数据,因而不返回响应。此时,主机依靠处理程序给出查询超时事件。

¨  若从机接收查询,发现有 (LRC或CRC) 通讯错误,并返回响应,此时,依靠主机处理程序给出查询超时事件。

¨  从机接收查询,无通讯错误,但无法处理(如读不存在的线圈和寄存器)时,向主机报告错误的性质。

不正常响应信息有2个与正常响应不相同的区域:

功能代码区:正常响应时,从机的响应功能代码区,带原查询的功能代码。所有功能代码的MSB为0(其值低于80H)。不正常响应时,从机把功能代码的MSB置为1,使功能代码值大于80H,高于正常响应的值。这样,主机应用程序能识别不正常响应事件,能检查不正常代码的数据区。

数据区:正常响应中,数据区含有(按查询要求给出的) 数据或统计值,在不正常响应中,数据区为一个不正常代码,它说明从机产生不正常响应的条件和原因。

例:主机发出查询,从机不正常响应。(为十六进制数据)。

查询:

Addr

Fun

DO start reg hi

DO start reg lo

DO #of regs hi

DO #of regs lo

CRC16

Hi

CRC16

Lo

0AH

01H

04H

A1H

00H

01H

XXH

XXH

响应(不正常或例外):

Addr

Fun

Exception Code

CRC16

Hi

CRC16

Lo

0AH

81H

02H

XXH

XXH

图 3 – 1 . 不正常信息帧格式

上例中,从机设备地址10(0AH),读线圈状态的功能代码(01),主机请求线圈状态的地址为1245(04A1H)。注意:只读一个指定线圈,地址为(0001).

若从机中不存在此线圈地址时,即以不正常代码(02),向主机返回一个不正常响应。说明为不合法地址。

表3–3 ModBus的不正常代码:

代码

名称

含义

01

不合法功能代码

从机接收的是一种不能执行功能代码。发出查询命令后,该代码指示无程序功能。

02

不合法数据地址

接收的数据地址,是从机不允许的地址。

03

不合法数据

查询数据区的值是从机不允许的值。

04

从机设备故障

从机执行主机请求的动作时出现不可恢复的错误。

05

确认

从机已接收请求处理数据,但需要较长的处理时间,为避免主机出现超时错误而发送该确认响应。主机以此再发送一个“查询程序完成”未决定从机是否已完成处理。

06

从机设备忙碌

从机正忙于处理一个长时程序命令,请求主机在从机空闲时发送信息。

07

否定

从机不能执行查询要求的程序功能时,该代码使用十进制13或14代码,向主机返回一个“不成功的编程请求”信息。主机应请求诊断从机的错误信息。

08

内存奇偶校验错误

从机读扩展内存中的数据时,发现有奇偶校验错误,主机按从机的要求重新发送数据请求。

///

功能码

描述

是否支持广播

起始地址

备注

01

读线圈状态DO

不支持

0000H

离散量输出口(0X类型)状态

02

读输入位状态DI

不支持

0000H

离散量输入信号(0X类型)状态

03

读保持寄存器

不支持

0000H

保持寄存器数据

04

读输入寄存器

不支持

0000H

输入寄存器(3X类型)数据

05

强制单个线圈DO

支持

0000H

强制单个线圈(0X类型)状态

06

预置单个保持寄存器

支持

0000H

保持寄存器(4X类型)

07

读不正常状态

不支持

 

 

08

诊断(见第3章)

 

不支持

0000H

 

09

程序 484

0000H

没查到

10

查询 484

0000H

没查到

11

通讯事件控制

不支持

 

 

12

通讯事件记录

不支持

 

 

13

程序控制器

0000H

没查到

14

查询控制器

0000H

没查到

15

强制多个线圈DO

支持

0000H

强制各线圈 (0X 类型)状态

16

预置多个保持寄存器

支持

0000H

保持寄存器(4X类型)

17

报告从机 ID

不支持

 

 

18

程序 884/M84

0000H

没查到

19

通讯链路复位

0000H

没查到

20

读通用参考值

不支持

0000H

扩展寄存器(6X类型)

21

写通用参考值

不支持

0000H

扩展寄存器(6X类型)

22

掩码写入4X类型寄存器

不支持

0000H

保持寄存器(4X类型)

23

读/写4X类型寄存器

不支持

0000H

保持寄存器(4X类型)

24

读FIFO查询数据

不支持

0000H

保持寄存器(4X类型)

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/157949.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • pageload事件何时触发(微信小程序显示不出来)

    一:前言小程序网络请求默认为异步请求,在appjs的onLaunch运行后进行异步请求时,程序不会停止,Page页已执行onload,我们希望onLaunch执行完后再执行onload。解决方法:定义回调函数//app.jsApp({onLaunch:function(){wx.request({url:’http://test.cn/lo…

  • 标志寄存器EFLAGS中的IF标志可以屏蔽MINI中断相应_cpsr寄存器标志位

    标志寄存器EFLAGS中的IF标志可以屏蔽MINI中断相应_cpsr寄存器标志位EFL介绍EFL的所有标志全称如上图所示,前8位(0~7)因为用不到,所以不作介绍,想看的可以点击原文链接。状态控制位1.追踪标志位TF(TrapFlag)当追踪标志TF被置为1时,CPU进入单步执行方式,即每执行一条指令,产生一个单步中断请求。这种方式主要用于程序的调试。指令系统中没有专门的指令来改变标志位TF的值,但可直接通过文末介绍的方法来进行修改。2.中断允许标志位…

    2022年10月30日
  • 大学数学课程(本科数学系有哪些课程)

    专业基础类课程:解析几何(大一上学期)数学分析I(大一上学期)数学分析II(大一下学期)数学分析III(大二上学期)高等代数I(大一上学期)高等代数II(大一下学期)常微分方程(大二上学期)抽象代数(大二下学期)概率论基础(大二下学期)复变函数(大二下学期)近世代数(大二下学期)专业核心课程:实变函数(大三上学期)偏微分方程(大三上学期)概率论(大三上学期)拓扑学(大三下学期)泛函分析(大三下学期)微分几何(大三下学期)数理方程(大三下学期)专业选

  • MODIS 数据产品预处理[通俗易懂]

    MODIS 数据产品预处理[通俗易懂]MODIS数据产品预处理1MCTK重投影第一步:安装ENVI的MCTK扩展工具解压压缩包,将其中的mctk.sav与modis_products.scsv文件复制到如图所示,相应的ENVI安装路径中去。第二步:打开ENVI5.3标准版如图所示在右边的工具栏处打开最下方的Extensions工具扩展包。可以看到安装的处理工具如图所示。鼠标左键双击打开其中的m…

  • python灰度图生成g代码_artcam pro 通过灰度图生成G代码详细图文教程

    python灰度图生成g代码_artcam pro 通过灰度图生成G代码详细图文教程本文是使用artcampro把灰度图转成G代码,看到喜欢的雕刻,可以自己先做成灰度图,然后转换成G代码,今天特地做了一个教程,仅供刚刚接触者使用!新手可以看看,老手请高抬贵手,不要嘲笑。自己技术有限,将就看吧!希望对大家有用!灰度图生成G代码详细图文教程如下:1、先找一张灰度图:2、打开软件,点“文件”–“新的”–“通过图像文件”,找到刚才自己打开的灰度图,双击图片就可以了。3、设置雕刻尺…

  • 2048游戏逻辑

    2048游戏逻辑

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号