大家好,又见面了,我是你们的朋友全栈君。
Databus系统是微博DIP团队开源的分布式日志传输系统。它是一个分布式、高可用的,用于采集和移动大量日志数据的服务。它基于流式数据的简单而灵活的架构,具备健壮性和容错性,具有故障转移与恢复机制。它采用简单的可扩展的数据投递模型,允许用户自定义扩展传输组件。
主要特性
- All-In-One 所有的日志传输通道整合到一个系统,避免针对每种业务相应地定制一套日志传输组件,这样随着业务的增多,运维压力会剧增。
- 热加载 在JVM无需重启的情况下,可以添加、更新、删除指定的日志传输通道,且不会影响到其他传输通道的正常工作。
- 容错性 对于Databus分布式系统,若出现少量传输节点异常崩溃,那么异常崩溃节点的数据流量会切至其他节点,不影响整个系统的正常运行。
系统架构
Databus系统可对接多种数据源和数据目的地,将数据源的日志同步到数据目的地。常用的数据源有:Kafka、本地文件、ScribeClient等,常用的数据目的地有:Kafka、HDFS等。
Databus系统的核心处理模块包含四部分:Source、Converter、Sink、Store。Source模块负责收集数据源的日志,Converter模块负责对日志转换,如:重命名Topic名称、对消息体的ETL和过滤,Sink模块负责把日志同步到数据目的地,Store模块负责把写入数据目的地失败的日志暂存起来,根据策略进行后续的处理。
Databus系统的监控报警模块主要包含:数据量统计、灵活的Exporter插件、异常报警。数据量统计用于统计Source端的读取量和Sink端的写入量,便于全链路的数据对账。系统暴露了Exporter接口,用户只需针对特定的存储系统实现相应的Exporter,即可把监控信息采集过去,配置图表后做直观的展示。另外若日志写入数据目的地失败,可通过配置策略发送报警。
数据流模型
Databus系统的数据流模型设计为一个Source对应一个Sink,一个Source和与其对应的Sink组成一个Pipeline管道,各个Pipeline相互独立、互不影响。通过这种Pipeline模型,用户新增、删除、变更某个Pipeline,不会影响到其他Pipeline的数据传输,且使用热部署的方式不需要重启进程。做到尽可能少的中断数据流,保障日志传输的实时性。
安装部署
编译
git clone https://github.com/weibodip/databus.git
cd databus
mvn clean package -DskipTests
初始化环境
mkdir -p /data0/workspace
mv ../databus /data0/workspace
mkdir /var/log/databus/
添加配置
可以在 /data0/workspace/databus/pipelines 目录下添加多个配置文件,每个配置文件抽象为一个 pipeline,各个 pipeline 的日志传输互相独立,互不干扰。这里以读取本地文件的日志记录,并写入 kafka topic 的 pipeline 配置为例。
vim /data0/workspace/databus/pipelines/file-to-kafka-example.properties
pipeline.name=file-to-kafka-example
pipeline.source=com.weibo.dip.databus.source.FileSource
pipeline.converter=com.weibo.dip.databus.converter.TopicNameConverter
pipeline.store=com.weibo.dip.databus.store.DefaultStore
pipeline.sink=com.weibo.dip.databus.sink.KafkaSinkV010
#source
source.file.directory=/data0/log/databus/test/
source.file.include.pattern=^.*\\.test\\.log$
source.file.category=test
source.file.delete.after.read=true
source.file.retention.second=7200
#converter
topic.mappings=test:test
#sink
sink.kafka.bootstrap.servers=hostname1:9092,hostname2:9092,hostname3:9092
sink.kafka.key.serializer=org.apache.kafka.common.serialization.StringSerializer
sink.kafka.value.serializer=org.apache.kafka.common.serialization.StringSerializer
启停操作
系统默认的JDK路径:/usr/local/jdk1.8.0_144,可根据情况修改 bin/databus-server.sh 的 JAVA_HOME。
# 启动
/data0/workspace/databus/bin/databus-server.sh start
# 查看运行状态
/data0/workspace/databus/bin/databus-server.sh status
# 查看日志
tailf /var/log/databus/server.log
# 停止
/data0/workspace/databus/bin/databus-server.sh stop
与 Flume 对比
Flume 的模型抽象上有 Channel 的概念,这样便于多路复用数据流,其常见的场景:
- 一个 source 复制到多个 channel
- 制定规则将一个 source 拆分到多个 channel
Flume 的多路复用数据流,增加了数据处理的灵活性,但是常用的 Channel 也存在一些问题:
- FileChannel 会降低数据写入和读取速度。
- MemoryChannel 增加对服务器内存的占用,数据传输通道过多时甚至会导致进程的OOM。
- KafkaChannel 浪费一部分的带宽资源;且引入额外组件,会导致传输链路变长,降低服务稳定性。
考虑到 Channel 在目前的实现上存在一些问题,去掉 Channel 在一些不需要多路复用数据流的场景下,数据传输表现效果会更好。Databus 的设计理念在于去掉 Channel,其相比 Flume 的优势在于:
- 模型抽象简单,方便理解,一个 source 对应一个 sink。
- 配置项简单,对于数十行的 Flume 配置,Databus 可能只需十几行即可搞定。
- 数据传输延迟低,去掉 Channel 组件,缩短了数据链路,尤其对于非内存的 Channel,降低数据延迟的效果更明显。
Flume | Databus | |
---|---|---|
模型抽象 | source-channel-sink | source-sink |
配置 | 繁多冗长 | 简洁 |
灵活性 | 一个source对应多个sink | 一个source对应一个sink |
数据传输延迟 | 较高 | 较低 |
结语
项目实现了很多常用的Source 和 Sink,并对每个Source 和 Sink 的特性、适用场景,以及配置参数进行了说明,方便用户快速上手。详细内容可查阅项目的GitHub地址:https://github.com/weibodip/databus
Databus系统在微博业务的日常使用场景中,已经承接了各种Source 和Sink 的数据传输业务。在大数据和高并发场景的检验下,系统曾暴露出一些问题,而这些问题已经得到修复,目前系统已稳定运行多年。不过在程序的世界里,Bug是无法避免的,在使用过程中如有遇到问题,欢迎提 Issue,我们会尽快修复~
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155451.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...