分布式日志传输系统Databus(一)–系统介绍「建议收藏」

分布式日志传输系统Databus(一)–系统介绍「建议收藏」Databus系统是微博DIP团队开源的分布式日志传输系统。它是一个分布式、高可用的,用于采集和移动大量日志数据的服务。它基于流式数据的简单而灵活的架构,具备健壮性和容错性,具有故障转移与恢复机制。它

大家好,又见面了,我是你们的朋友全栈君。

Databus系统是微博DIP团队开源的分布式日志传输系统。它是一个分布式、高可用的,用于采集和移动大量日志数据的服务。它基于流式数据的简单而灵活的架构,具备健壮性和容错性,具有故障转移与恢复机制。它采用简单的可扩展的数据投递模型,允许用户自定义扩展传输组件。

主要特性

  • All-In-One 所有的日志传输通道整合到一个系统,避免针对每种业务相应地定制一套日志传输组件,这样随着业务的增多,运维压力会剧增。
  • 热加载 在JVM无需重启的情况下,可以添加、更新、删除指定的日志传输通道,且不会影响到其他传输通道的正常工作。
  • 容错性 对于Databus分布式系统,若出现少量传输节点异常崩溃,那么异常崩溃节点的数据流量会切至其他节点,不影响整个系统的正常运行。

系统架构

Databus系统可对接多种数据源和数据目的地,将数据源的日志同步到数据目的地。常用的数据源有:Kafka、本地文件、ScribeClient等,常用的数据目的地有:Kafka、HDFS等。

Databus系统的核心处理模块包含四部分:Source、Converter、Sink、Store。Source模块负责收集数据源的日志,Converter模块负责对日志转换,如:重命名Topic名称、对消息体的ETL和过滤,Sink模块负责把日志同步到数据目的地,Store模块负责把写入数据目的地失败的日志暂存起来,根据策略进行后续的处理。

Databus系统的监控报警模块主要包含:数据量统计、灵活的Exporter插件、异常报警。数据量统计用于统计Source端的读取量和Sink端的写入量,便于全链路的数据对账。系统暴露了Exporter接口,用户只需针对特定的存储系统实现相应的Exporter,即可把监控信息采集过去,配置图表后做直观的展示。另外若日志写入数据目的地失败,可通过配置策略发送报警。

databus-architecture

数据流模型

Databus系统的数据流模型设计为一个Source对应一个Sink,一个Source和与其对应的Sink组成一个Pipeline管道,各个Pipeline相互独立、互不影响。通过这种Pipeline模型,用户新增、删除、变更某个Pipeline,不会影响到其他Pipeline的数据传输,且使用热部署的方式不需要重启进程。做到尽可能少的中断数据流,保障日志传输的实时性。

databus-dataflow

安装部署

编译

git clone https://github.com/weibodip/databus.git
cd databus
mvn clean package -DskipTests

初始化环境

mkdir -p /data0/workspace
mv ../databus /data0/workspace
mkdir /var/log/databus/

添加配置

可以在 /data0/workspace/databus/pipelines 目录下添加多个配置文件,每个配置文件抽象为一个 pipeline,各个 pipeline 的日志传输互相独立,互不干扰。这里以读取本地文件的日志记录,并写入 kafka topic 的 pipeline 配置为例。

vim /data0/workspace/databus/pipelines/file-to-kafka-example.properties
pipeline.name=file-to-kafka-example

pipeline.source=com.weibo.dip.databus.source.FileSource
pipeline.converter=com.weibo.dip.databus.converter.TopicNameConverter
pipeline.store=com.weibo.dip.databus.store.DefaultStore
pipeline.sink=com.weibo.dip.databus.sink.KafkaSinkV010

#source
source.file.directory=/data0/log/databus/test/
source.file.include.pattern=^.*\\.test\\.log$
source.file.category=test
source.file.delete.after.read=true
source.file.retention.second=7200

#converter
topic.mappings=test:test

#sink
sink.kafka.bootstrap.servers=hostname1:9092,hostname2:9092,hostname3:9092
sink.kafka.key.serializer=org.apache.kafka.common.serialization.StringSerializer
sink.kafka.value.serializer=org.apache.kafka.common.serialization.StringSerializer

启停操作

系统默认的JDK路径:/usr/local/jdk1.8.0_144,可根据情况修改 bin/databus-server.sh 的 JAVA_HOME。

# 启动
/data0/workspace/databus/bin/databus-server.sh start

# 查看运行状态
/data0/workspace/databus/bin/databus-server.sh status

# 查看日志
tailf /var/log/databus/server.log

# 停止
/data0/workspace/databus/bin/databus-server.sh stop

与 Flume 对比

Flume 的模型抽象上有 Channel 的概念,这样便于多路复用数据流,其常见的场景:

  • 一个 source 复制到多个 channel
  • 制定规则将一个 source 拆分到多个 channel

Flume 的多路复用数据流,增加了数据处理的灵活性,但是常用的 Channel 也存在一些问题:

  • FileChannel 会降低数据写入和读取速度。
  • MemoryChannel 增加对服务器内存的占用,数据传输通道过多时甚至会导致进程的OOM。
  • KafkaChannel 浪费一部分的带宽资源;且引入额外组件,会导致传输链路变长,降低服务稳定性。

考虑到 Channel 在目前的实现上存在一些问题,去掉 Channel 在一些不需要多路复用数据流的场景下,数据传输表现效果会更好。Databus 的设计理念在于去掉 Channel,其相比 Flume 的优势在于:

  • 模型抽象简单,方便理解,一个 source 对应一个 sink。
  • 配置项简单,对于数十行的 Flume 配置,Databus 可能只需十几行即可搞定。
  • 数据传输延迟低,去掉 Channel 组件,缩短了数据链路,尤其对于非内存的 Channel,降低数据延迟的效果更明显。
Flume Databus
模型抽象 source-channel-sink source-sink
配置 繁多冗长 简洁
灵活性 一个source对应多个sink 一个source对应一个sink
数据传输延迟 较高 较低

结语

项目实现了很多常用的Source 和 Sink,并对每个Source 和 Sink 的特性、适用场景,以及配置参数进行了说明,方便用户快速上手。详细内容可查阅项目的GitHub地址:https://github.com/weibodip/databus

Databus系统在微博业务的日常使用场景中,已经承接了各种Source 和Sink 的数据传输业务。在大数据和高并发场景的检验下,系统曾暴露出一些问题,而这些问题已经得到修复,目前系统已稳定运行多年。不过在程序的世界里,Bug是无法避免的,在使用过程中如有遇到问题,欢迎提 Issue,我们会尽快修复~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/155451.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • HDU5432-Pyramid Split[通俗易懂]

    HDU5432-Pyramid Split[通俗易懂]最近以各种借口偷懒了,上次BC的题一直也没补,今天才补完第一题,非常好过,可当时就是想不通~#include#include#include#defineeps1e-5doublea[10005],b[10005];intn;intbSearch(doublebegin,doubleend,doublee){doublemid,left=begi

  • android短信验证码方案,Android开发之属于你的短信验证码(一)

    android短信验证码方案,Android开发之属于你的短信验证码(一)不飞则已,一飞冲天;不鸣则已,一鸣惊人———司马迁最近工作又有新需求,要求用户在注册的时候需要通过手机验证码,这样做的目的是防止用户通过一个邮箱来随便的注册,那么好,今天我们就一起来学习一下Android中的短信验证码这一个知识点。如有谬误,欢迎批评指正,如有疑问欢迎留言,谢谢在说这个知识点前,我们首先来了解下聚合数据一、聚合数据介绍聚合数据是一家国内最大的基础数据API提供商,专业…

  • Thinkphp+Nginx(PHPstudy)下报的404错误,403错误解决

    Thinkphp+Nginx(PHPstudy)下报的404错误,403错误解决

    2021年10月12日
  • PCB设计中的20H原则

    “20H原则”是指要确保电源平面边缘比地平面(0V参考面)边缘至少缩进相当于两个平面之间间距的20倍,其中H就是指电源平面与地平面之间的距离,如下图。为什么需要20H原则?在高速PCB中,通常电源平面和地平面间相互耦合RF能量成为边缘磁通泄露情况,而且RF能量(RF电流)会沿着PCB边缘辐射出去,为了减少这种耦合效应,所有的电源平面物理尺寸都要比最近邻的地平面尺寸小20H。补充…

  • Pytest和Allure测试框架-超详细版+实战

    Pytest和Allure测试框架-超详细版+实战文章目录一:pytest的介绍,安装,框架结构,执行方式1,特点2,安装3,pytest的框架结构4,执行方式二:Pytest-断言、跳过及运行1,Pytest-断言、跳过及运行2,mark中的skip(跳过)3,mark中的xfail(失败)4,使用自定义标记mark只执行部分用例5,文件名类名方法执行部分用例6,-k组合调用执行部分用例三,Pytest-fixture1. 如下:…

  • pycharm2021 激活码永久(最新序列号破解)

    pycharm2021 激活码永久(最新序列号破解),https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号