单调队列和单调栈详解

单调队列和单调栈详解这里是我的blog:有更多算法分享=v=https://endlesslethe.com/monotone-queue-and-stack-tutorial.html前言单调栈和单调队列算是栈和队列的高级应用吧,在公司面试中应该是不怎么会出现的(除非算法岗?)。因为原理比较简单,网络上的相关资料反而对于这两个东西说得都不甚清楚,尤其是它们的应用方法。最基本的两本中文算法书“紫书”和“白皮”都

大家好,又见面了,我是你们的朋友全栈君。

这里是我的blog:有更多算法分享。排版可能也会更好看一点=v=
https://endlesslethe.com/monotone-queue-and-stack-tutorial.html

前言

单调栈和单调队列算是栈和队列的高级应用吧,在公司面试中应该是不怎么会出现的(除非算法岗?)。
因为原理比较简单,网络上的相关资料反而对于这两个东西说得都不甚清楚,尤其是它们的应用方法。最基本的两本中文算法书“紫书”和“白皮”都没有提到。

而我因为平日要做的事情也很多,仓促中写下的这篇文章难免表达上会有不清晰的地方和各种疏漏,希望读者不吝赐教=v=。

栈和队列这两种基础数据结构戳:TBC。

先说明一下,无论是栈还是队列,我们把元素进入的一端称作“尾部”,并用双引号标出,另一端称作“尾部”。对于栈,头部即是栈底,尾部即是栈顶。对于队列,头部对应队首,尾部对应队尾。

monotone queue and stack

注:我不确定单调队列是否翻译成monotone queue,算法导论上没有提到这个数据结构,Bing上也没有搜索到对应它的结果(倒是返回了关于优先队列的结果)。

单调栈

我们都已经非常熟悉栈了,它具有先入后出的性质。而单调栈为了满足单调的要求,增加了一个性质:

  • 从栈顶到栈底的元素是严格递增(or递减)

显然,这和我们的正常的流程有一定矛盾之处——如果栈中是5 4 3 2 1,如果压入3怎么办?
原来我们只需要添加到栈尾即可,现在则需要将3 2 1弹出,再压入3,栈变成5 4 3
注:弹出的元素我们直接舍弃掉。

具体进栈过程

  • 对于单调递增栈,若当前进栈元素为e,从栈顶开始遍历元素,把小于e或者等于e的元素弹出栈,直接遇到一个大于e的元素或者栈为空为止,然后再把e压入栈中。
  • 对于单调递减栈,则每次弹出的是大于e或者等于e的元素。

一个单调递增栈的例子:

进栈元素分别为3,4,2,6,4,5,2,3

第i步 操作 结果
1 3进栈 3
2 3出栈,4进栈 4
3 2进栈 4 2
4 2、4出栈,6进栈 6
5 4进栈 6 4
6 4出栈,5进栈 6 5
7 2进栈 6 5 2
8 2出栈,3进栈 6 5 3

这里提供一个递增的单调栈的图,元素依次为3,2,8,4,5,7,6,4
注意看随着i的变化,栈中元素的变化。
monotone queue example 1

单调队列

对于单调队列,从单调栈的性质我们可以类推出:

  • 从队列头到队列尾的元素是严格递增

添加元素e到队尾时,我们采取的解决方法同样是,先从队尾删去小于等于e的元素。
注意,普通的队列queue是不支持从队尾删除的,我们需要使用双端队列deque,即有两个指针,一头一尾。

队列的大小问题

在谈及单调栈时,我略去了栈的大小这一个问题,因为在实际使用中(比如函数调用栈)栈就通常没有大小的概念。而对于队列,它的大小就很重要了。
如果队列满了,我们的解决方法是,将队列头的元素弹出,再添加新的元素到队列尾。

具体入队过程

  • 对于单调递增队列,设当前准备入队的元素为e,从队尾开始把队列中的元素逐个与e对比,把比e大或者与e相等的元素逐个删除,直到遇到一个比e小的元素或者队列为空为止,然后把当前元素e插入到队尾。
  • 对于单调递减队列也是同样道理,只不过从队尾删除的是比e小或者与e相等的元素。

一个递增单调队列的例子

队列大小不能超过3,入队元素依次为3,2,8,4,5,7,6,4

第i步 操作 结果
1 3入队 3
2 3从队尾出队,2入队 2
3 8入队 2 8
4 8从队尾出队,4入队 2 4
5 5入队 2 4 5
6 2从队头出队,7入队 4 5 7
7 7从队尾出队,6入队 4 5 6
8 6、5、4从队尾出队,4入队 4

monotone queue example 2

单调队列和单调栈的区别和联系

单调队列和单调栈的相同点

  • 单调队列和单调栈的“头部”都是最先添加的元素,“尾部”都是最后添加的元素。
  • 递增和递减的判断依据是:从栈底(队尾)到栈顶(队首),元素大小的变化情况。所以队列和栈是相反的。
  • 它们的操作是非常相似的。当队列长度为无穷大时,递增的单调队列和递减的单调栈,排列是一样的!
    原因在于,长度为无穷大的的队列不会在“头部”有popfront操作,而在“尾部”的操作是一模一样的:数据都从“尾部”进入,并按照相同的规则进行比较。
  • 两者维护的时间复杂度都是O(n),因为每个元素都只操作一次。

区别

  • 队列可以从队列头弹出元素,可以方便地根据入队的时间顺序(访问的顺序)删除元素。
  • 这样导致了单调队列和单调栈维护的区间不同。当访问到第i个元素时,单调栈维护的区间为[0, i),而单调队列维护的区间为(lastpop, i)
  • 单调队列可以访问“头部”和“尾部”,而单调栈只能访问栈顶(也就是“尾部”)。这导致单调栈无法获取[0, i)的区间最大值/最小值。

综上所述,单调队列实际上是单调栈的的升级版。单调栈只支持访问尾部,而单调队列两端都可以。当然,单调栈的编程上(两个函数)比单调队列(三个函数)要简单。

单调队列和单调栈的性质

下面的总结,如果没有特别指出是单调队列/单调栈,那么就不区分队列和栈,而且从“头部”到“尾部”数据是严格递减的,请读者自行注意。
  1. 具有单调性
  2. 容器中的元素个数永远不为空。(因为当添加一个元素时,它要么直接被添加到“尾部”,要么弹出k个比它小的数后再被添加到“尾部”)
  3. 对于一个元素i,我们可以知道在它左边区间,第一个比它小的值,也就是\({\rm{Max({ v[x]|x < i \& \& v[x] < v[i]} )}}\)
    在元素添加的过程中,我们会不断弹出比它小的值,最后一个弹出的值,即为所求。如果没有元素被弹出,那就无法求出,虽然这个数一定存在。
    顺便在这里多提一句,第二个比它小的数是一定不知道的,因为不确定是否被弹出
  4. 对于一个元素i,我们可以知道在它左边区间,第一个比它大的值,也就是\(Min\left( {
    { v\left[ x \right]|x < i\& \& v\left[ x \right] > v\left[ i \right]} } \right)\)
    在弹出比i小的所有元素后,栈顶的元素即为所求。如果栈为空,也无法求出。
  5. 根据2和3,它们是元素插入时所获得的信息,我们可以推出当元素被弹出时能获得的信息:在右边区间,第一个比它大的值。
  6. 我们可以统计在添加元素过程中,弹出了多少个元素。

注:这里的大于和小于并不严谨,是为了表述尽量简单。请读者自己注意大于/大于等于,小于/小于等于。根据原则:容器中等于e的元素也会被弹出,进行判断即可。

单调队列和单调栈的应用

单调队列

  • 可以查询区间最值(不能维护区间k大,因为队列中很有可能没有k个元素)
  • 优化DP(见参考文献3)
    单调队列一般是用于优化动态规划方面问题的一种特殊数据结构,且多数情况是与定长连续子区间问题相关联。

单调栈即可完成的

对于某个元素i:

  • 左边区间第一个比它小的数,第一个比它大的数
  • 确定这个元素是否是区间最值
  • 右边区间第一个大于它的值
  • 到 右边区间第一个大于它的值 的距离
  • 确定以该元素为最值的最长区间

在具体题目里,如何使用单调栈和单调队列是一目了然的,不要强迫自己记忆,而是要理解
要想掌握好单调栈和单调队列,必须要做一些题

具体代码

单调队列

//在“尾部”添加元素x
while (l != r && mq[r] <= x) r--;
mq[++r] = x;

//查询队首元素
if (l != r) printf("%d\n", mq[l+1]);
else printf("-1\n");

//弹出队首元素
if (l != r) l++;

单调栈

//在“尾部”添加元素
while (r != 0 || ms[r] <= x) r--;
ms[++r] = x;

//查询栈顶元素
if (r != 0) printf("%d\n", ms[r]);
else printf("-1");

注:在前面的情况,我们是直接压入了元素e。但我们往往选择压入元素e的index(依据题型来决定),需要稍作修改,这里不提供对应代码。

题目总结

  • FZU 1894
    1.C name rp 名字为name人品为rp的人排到队尾
    2.G 队首的人出队
    3.Q 询问当前队列中rp最高的
    实现这三个操作。模板题。
    AC代码
  • POJ 2796
    最大化(区间min * 区间和)
    使用单调栈,从某一元素i向左右区间延伸,找到最大区间。
    AC代码
  • HDU 5033
    模板题
  • FJSDFZOJ 1308 音乐会的等待/诺诺的队列
    对于l和r,如果[l, r]内没有大于min(l,r)的数,则这两个数可以互相看见。
    求能互相看见的对数
    标程对题意的理解比较奇怪。
    AC代码

参考文献

I. 单调队列 单调栈总结
II. 单调栈的介绍以及一些基本性质
III. 单调队列,单调栈总结
IV. 单调队列或单调栈的学习及认识

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152999.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • huffman编码——原理与实现

    huffman编码——原理与实现

    2021年12月14日
  • c语言可重入函数_c语言不可重入函数有哪些

    c语言可重入函数_c语言不可重入函数有哪些什么是可重入函数可重入函数指一个可同时被多个任务调用的过程,当一个函数满足下列条件时多为不可重入函数(1)函数中使用了静态的数据结构;(2)函数中使用了malloc()、free()函数;(3)函数汇总调用了标准I/O函数。(如open、read、write、close等系统调用)如何编写可重入函数(1)编写可重入函数时,不应使用static局部变量,应使用auto即缺省…

  • 向量投影证明[通俗易懂]

    向量投影证明[通俗易懂]a在b上的投影

    2022年10月31日
  • ABAP 常用BAPI

    ABAP 常用BAPIABAP常用BAPI

  • idea 查找与替换「建议收藏」

    idea 查找与替换「建议收藏」查找当前文件内容:ctrl+F如上图片查找全局文件:ctrl+shift+F或doubleshift(按两下)或ctrl+shift+N替换当前文件内容:ctrl+R如上图片

  • 突破思维的障碍

    突破思维的障碍译者的话   在众多的讲述思维及创造性的书中,这是一本普通的小册子,但它却是吸引人的。作者用妙趣横生而又日常可见的素材向我们娓娓叙说了人人都会关心的问题,即我们是否意识到自己的思维障碍,怎样克服它,让自己变得更富有创造活力。   这本书在美国一版再版,风靡一时,拥有广泛的读者,无论是从事研究工作的高级学者、研究人员,还是从事行政、工商和管理活动的人士或普通学生。相信本书与中国读者的见面

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号