(二)【Matlab】Matlab矩阵处理

(二)【Matlab】Matlab矩阵处理【Matlab】

大家好,又见面了,我是你们的朋友全栈君。

【Matlab】


关注微信公众号二进制人工智能并回复matlab,即可获取本文的md文件。
md文件编辑器:https://www.typora.io/ ,可对本文进行二次笔记。



在这里插入图片描述

A 特殊矩阵

A.a 通用性矩阵

在这里插入图片描述
以上函数调用格式相同,以zeros为例:
在这里插入图片描述
例题:
在这里插入图片描述


A.b 用于专门学科的特殊矩阵

在这里插入图片描述
例题:
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
rat:有理数


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
例子:
在这里插入图片描述


B 矩阵变换

B.a 对角阵

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
例题:
在这里插入图片描述


B.b 三角阵

在这里插入图片描述


在这里插入图片描述


B.c 矩阵的转置

在这里插入图片描述
例子:
在这里插入图片描述


B.d 矩阵的旋转

在这里插入图片描述


B.e 矩阵的翻转

在这里插入图片描述
在这里插入图片描述


B.f 矩阵的求逆

在这里插入图片描述
例题:
在这里插入图片描述

C 矩阵求值

C.a 矩阵的行列式

在这里插入图片描述
例题:
在这里插入图片描述


C.b 矩阵的秩

在这里插入图片描述
例题:
在这里插入图片描述

C.c 矩阵的迹

在这里插入图片描述
例子:
在这里插入图片描述


C.d 向量和矩阵的范数

矩阵或向量的范数用来度量矩阵或向量在某种意义下的长度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


C.e 矩阵的条件数

在这里插入图片描述
在这里插入图片描述
例题:
在这里插入图片描述


D 矩阵的特征值与特征向量

D.a 矩阵特征值的数学定义

在这里插入图片描述


D.b 求矩阵的特征值和特征向量

在这里插入图片描述
例子:A*X(:,1)=D(1)*X(:,1)
在这里插入图片描述
例题:
在这里插入图片描述
X3对角为X1和X2,


D.c 特征值的几何意义

在这里插入图片描述
y1和y2分别是x1和x2经过A矩阵变换得到的。把 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1λ2当作伸缩因子,y1和y2是x1和x2经过 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1λ2伸缩以后的结果,如图所示。
更进一步地,连续取单位向量x,让它大小保持唯一,那么Ax就将圆弧拉伸,变成椭圆弧。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


E 稀疏矩阵

稀疏矩阵指的是零元素个数远远多于非零元素个数的矩阵,如果将大量的零元素也存储起来,必将导致存储空间的浪费。为此,MATLAB为稀疏矩阵提供特殊的存储方式。

E.a矩阵的存储方式

在这里插入图片描述
例子:
在这里插入图片描述


E.b 稀疏存储方式的产生

在这里插入图片描述
例子:
在这里插入图片描述


在这里插入图片描述
例子:
在这里插入图片描述


在这里插入图片描述
用A的一行元素表示一个稀疏矩阵的元素,相当于A每一行的每个元素是相应的稀疏矩阵元素的一个信息。这些信息组合经过spconvert就可以得到相应的稀疏矩阵元素。
例子:
A描述的稀疏矩阵:[2,2,1:第二行第二列的1;2,1,-1:第二行第一列的-1;2,4,3:第二行第四列的3;其他为0。]经过spconvert实现A描述的稀疏矩阵。
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
例子:
在这里插入图片描述
在这里插入图片描述

A的稀疏存储:
在这里插入图片描述


在这里插入图片描述


E.c 稀疏矩阵应用举例

在这里插入图片描述

clc;clear
kf1= [1;1;2;1;0];     % 主对角线以下第一条元素
k0 = [2;4;6;6;1];     % 主对角线元素
k1 = [0;3;1;4;2];     % 主对角线以上第一条元素
B = [kf1,k0,k1];
d = [-1;0;1];
A = spdiags(B,d,5,5); % 产生稀疏存储的稀疏矩阵
f = [0;3;2;1;5];
x = A\f               %求出解


在这里插入图片描述


图片来源:
https://www.icourse163.org/search.htm?search=%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%20Matlab#/

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152968.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 随机漫步理论_随机漫步理论与巴菲特

    随机漫步理论_随机漫步理论与巴菲特理论部分:代码部分:https://www.jianshu.com/p/numpy_test

  • 什么是文本挖掘 ?「建议收藏」

    什么是文本挖掘 ?「建议收藏」什么是文本挖掘  文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。1998年底,国家重点研究发展规划首批实施项目中明确指出,文本挖掘是“图像、语言、自然语言理解与知识挖掘”中的重要内容。  文本挖掘是信息挖掘的一个研究分支,用于基于文本信息的知识发现。文本挖掘利用智能算法,如神经网络、基于案例的推理、可能性推理等,并结合文字处

  • 提问的艺术(转帖)

    提问的艺术(转帖) 一、为什么要探讨提问的艺术呢?首先我们要搞清楚什么是问题,为什么要提问,为什么要强调提问的艺术?所谓问题指的是,所有造成我们焦虑、争议的、不能自我答复和解决的一些思考和事情,而且在当时并没有适当答案可以解决。在这个网络时代,没有人是全能的,谁都会在必要的时候为了寻求帮助和寻找答案而提问。而所谓艺术,指的是通过某种表现手法,使人产生喜爱感觉。谁都需要自己的提问,可以在最短、最快

  • 3-UFT对象管理

    3-UFT对象管理UFT对象的管理

  • 学习Java好书及视频推荐

    学习Java好书及视频推荐要想在java领域成为大牛,除了不断进行项目实战以外,还要不断的进行进修和学习,以下将本人学习java多年使用的好书和一些好的视频推荐给大家,这些书和视频都是本人在网络找了很久,后来又经过实践证明的好书和视频。希望对大家学习java有帮助首先,是书的推荐:1学习java,java基础,1.0入门:HeadFirstJava(中文版)这本书,我没看过,但是在当当网的评价是5颗星,…

  • goland 2021 激活码【中文破解版】

    (goland 2021 激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~https://javaforall.cn/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~ML…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号