大家好,又见面了,我是你们的朋友全栈君。
对于背包问题,经典的背包九讲已经讲的很明白了,本来就不打算写这方面问题了。
但是吧。
我发现,那个最出名的九讲竟然没写队列优化的背包。。。。
那我必须写一下咯嘿嘿,这么好的思想。
我们回顾一下背包问题吧。
01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。
就是说,对于本物品,我们选择拿或不拿
比如费用是3.
相关图解:
我们求表格中黄色部分,只和两个黑色部分有关
拿了,背包容量减少,我们价值加上减少后最大价值。
不拿,最大价值等于没有这件物品,背包不变,的最大价值。
完全背包问题
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。
f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}
图解:
因为我们拿了本物品还可以继续拿无限件,对于当前物品,无论之前拿没拿,还可以继续拿,所以是f[i][v-c[i]]+w[i]
换一个角度说明这个问题为什么可以f[i][v-c[i]]+w[i],也就是同一排。
其实是这样的,我们对于黄色部分,也就是当前物品,有很多种选择,可以拿一个,两个。。。一直到背包容量不够了。
也就是说,可以不拿,也就是J1,可以拿一个,也就是G1+w[i],也可以拿两个,也就是D1+2w[i],拿三个,A1+3w[i]。
但是我们看G2,G2其实已经是之前的最大了:A1+2w[i],D1+w[i],G1他们中最大的,对么?
既然G2是他们中最大的。
我们怎么求J2?
是不是只要求G2+w[i]和J1的最大值就好了。
因为G2把剩下的情况都保存好了。
多重背包问题 (正文)
题目
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
和之前的完全背包不同,这次,每件物品有最多拿n[i]件的限制。
思路一:我们可以把物品全都看成01背包:比如第i件,我们把它拆成n[i]件一样的单独物品即可。
思路二:思路一时间复杂度太高。利用二进制思路:一个n位二进制,能表示2^n种状态,如果这些状态就是拿了多少物品,我们可以把每一位代表的数都拿出来,比如n[i]=16,我们把它拆成1,2,4,8,1,每一堆物品看成一个单独物品。
为什么最后有个一?因为从0到16有十七种状态,四位不足以表示。我们最后补上第五位1.
把拆出来的物品按01背包做即可。
思路三:我们可以利用单调队列:
https://blog.csdn.net/hebtu666/article/details/82720880
再回想完全背包:为什么可以那么做?因为每件物品能拿无限件。所以可以。而多重背包因为有了最多拿多少的限制,我们就不敢直接从G2中拿数,因为G2可能是拿满了本物品以后才达到的状态 。
比如n[i]=2,如果G2的状态是2w[i],拿了两个2物品达到最大值,我们的J2就不能再拿本物品了。
如何解决这个问题?就是我给的网址中的,双端单调队列
利用窗口最大值的思想。
大家想想怎么实现再看下文。
发现问题了吗?
我们求出J2以后,按原来的做法,是该求K2的,但是K2所需要的信息和J2完全不同,红色才是K2可能需要的信息。
所以我们以物品重量为差,先把黑色系列推出来,再推红色系列,依此类推。
这个例子就是推三次,每组各元素之间差3.
这样就不会出现构造一堆单调队列的尴尬情况了。
在代码中继续详细解释:
//输入
int n;
int W;
int w[MAX_N];
int v[MAX_N];
int m[MAX_N];
int dp[MAX_N+1];//压空间,本知识参考https://blog.csdn.net/hebtu666/article/details/79964233
int deq[MAX_N+1];//双端队列,保存下标
int deqv[MAX_N+1];//双端队列,保存值
队列存的就是所有上一行能取到的范围,比如对于J2,队列里存的就是G1-w[i],D1-2w[i],A1-3w[i]等等合法情况。(为了操作方便都是j,利用差实现最终的运算)
他们之中最大的就是队头,加上最多存储个数就好。
void solve()
{
for(int i=0;i<n;i++)//参考过那个网址第二题应该懂
{
for(int a=0;a<w[i];a++)//把每个分组都打一遍
{
int s=0;//初始化双端队列头尾
int t=0;
for(int j=0;j*w[i]+a<=W;j++)//每组第j个元素
{
int val=dp[j*w[i]+a]-j*v[i];
while(s<t && deqv[t-1]<=val)//直到不改变单调性
t--;
deq[t]=j;
deqv[t]=val;
t++;
//利用队头求出dp
dp[j*w[i]+a]=deqv[s]+j*v[i];
if(deq[s]==j-m[i])s++;//检查过期
}
}
}
}
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/152966.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...