基于LSTM的DDPG实现

基于LSTM的DDPG实现最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。importtorchimporttorch.nnasnnimporttorch.op…

大家好,又见面了,我是你们的朋友全栈君。

这两天实在不想动这个东西,想了想还是毕业要紧。
稍微跟自己搭的环境结合了一下,对于高维的状态输入可以完成训练(但效果没测试,至少跑通了),并且加入了batch训练的过程,根据伯克利课程说明,加入batch的话会让训练方差减小,提升系统的稳定性。但是因为memory那块使用list做的所以取batch的时候过程相当绕(我发现我现在写python代码还是摆脱不了java的影子啊),希望有大佬给我点建议。

最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from Env_2_DDPG import Environment
date_count = 5
date_dim = 6
hide_dim = 10
hide_dim_lstm = 100
gamma = 0.8
lr_miu = 0.01
lr_Q = 0.02
tau = 0.01
trans_num = 10
batch_size = 4
MAX_EPISODES = 10
MAX_EP_STEPS = 500
memory_size = 10
class My_loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.mean(-x)
class A_net(nn.Module):
def __init__(self):
super(A_net, self).__init__()
self.state_dim = date_dim*date_count
self.net = nn.LSTM(date_dim, hide_dim_lstm)
self.reg = nn.Linear(date_count*hide_dim_lstm, 1)
def forward(self, state):
state = torch.Tensor(state)
# state = torch.unsqueeze(state, 0)
x, _ = self.net(state)
s, b, h = x.shape
x = x.view(s, b*h)
x = self.reg(x)
x = x.view(s, -1)
return x
class C_net(nn.Module):
def __init__(self):
super(C_net, self).__init__()
self.state_dim = date_count*date_dim
self.net = nn.LSTM(date_dim, hide_dim_lstm)
self.lstm_res = nn.Linear(date_count*hide_dim_lstm, date_count)
self.action_net = nn.Linear(1, date_count)
self.reg = nn.Linear(date_count, 1)
def forward(self, state, action):
state = torch.Tensor(state)
x1, _ = self.net(state)
x2 = self.action_net(action)
s, b, h = x1.shape
x1 = x1.view(s, b*h)
x1 = self.lstm_res(x1)
x = self.reg(x1+x2)
x = x.view(s, -1)
return x
class ddpg_lstm(nn.Module):
def __init__(self):
super(ddpg_lstm, self).__init__()
self.miu_net = A_net()
self.miu_pie = A_net()
self.Q_net = C_net()
self.Q_pie = C_net()
self.optim_miu = optim.SGD(self.miu_net.parameters(), lr=lr_miu, momentum=0.5)
self.optim_Q = optim.Adam(self.Q_net.parameters(), lr=lr_Q)
self.loss_Q = nn.MSELoss()
self.memory = list()
self.index = 0
def learn(self, tra):
s = torch.Tensor(tra[0])
s = s.reshape(batch_size, date_count, date_dim)
r = torch.Tensor(tra[1])
a = torch.Tensor(tra[2])
s_ = torch.Tensor(tra[3])
s_ = s_.reshape(batch_size, date_count, date_dim)
a_ = self.miu_pie(s_)
y = r + gamma*self.Q_pie(s_, a_)
# a = torch.Tensor(np.array([a]))
q = self.Q_net(s, a)
self.optim_Q.zero_grad()
q_loss = self.loss_Q(y, q)
q_loss.backward(retain_graph=True)
self.optim_Q.step()
self.optim_miu.zero_grad()
_miu_loss = My_loss()
miu_loss = _miu_loss(q)
miu_loss.backward()
self.optim_miu.step()
def soft_update(self):
self.miu_pie.net.weight.data = tau*self.miu_net.net.weight.data + (1-tau)*self.miu_pie.net.weight.data
self.miu_pie.reg.weight.data = tau*self.miu_net.reg.weight.data + (1-tau)*self.miu_pie.reg.weight.data
self.Q_pie.net.weight.data = tau*self.Q_net.net.weight.data + (1-tau)*self.Q_pie.net.weight.data
self.Q_pie.action_net.weight.data = tau*self.Q_net.action_net.weight.data + (1-tau)*self.Q_pie.action_net.weight.data
self.Q_pie.reg.weight.data = tau*self.Q_net.reg.weight.data + (1-tau)*self.Q_pie.reg.weight.data
# for x in self.miu_net.state_dict().keys():
# eval('self.miu_net.' + x + '.data.mul_((1-TAU))')
# eval('self.miu_net.' + x + '.data.add_(TAU*self.Actor_eval.' + x + '.data)')
# for x in self.Critic_target.state_dict().keys():
# eval('self.Critic_target.' + x + '.data.mul_((1-TAU))')
# eval('self.Critic_target.' + x + '.data.add_(TAU*self.Critic_eval.' + x + '.data)')
def store_trans(self, s, r, a, s_):
temp = list()
temp.append(s)
temp.append(r)
temp.append(a)
temp.append(s_)
self.memory.append(temp)
self.index += 1
if self.index > trans_num:
del self.memory[0]
def train_model(self):
batch = np.random.choice(memory_size, batch_size)
bs = np.zeros((batch_size, date_count*date_dim))
br = np.zeros((batch_size, 1))
ba = np.zeros((batch_size, 1))
bs_ = np.zeros((batch_size, date_count*date_dim))
index_ = 0
for item in batch:
bs[index_] = (np.array(self.memory[item][0])).reshape(date_dim*date_count)
br[index_] = self.memory[item][1]
ba[index_] = self.memory[item][2]
bs_[index_] = (np.array(self.memory[item][3])).reshape(date_dim*date_count)
index_ += 1
# self.learn(self.memory[item])
self.learn([bs, br, ba, bs_])
print('over')
# self.learn(tra)
# self.learn()
def next_action(self, state):
action = self.miu_net(state)
return action.detach()
ddpg = ddpg_lstm()
env = Environment()
def train():
for i in range(MAX_EPISODES):
# if i > 50:
# print(i)
s = env.reset()
ep_reward = 0
for j in range(MAX_EP_STEPS):
a = ddpg.next_action(s)
s_, r = env.step(a)
ddpg.store_trans(s, a, r/10, s_)
if ddpg.index > memory_size:
ddpg.train_model()
s = s_
ep_reward += r
if i % 1 == 0 and i > 0:
print('Episode:', i, ' Reward: %i' % int(ep_reward))
torch.save(ddpg, 'ddpg2.pt')

需要注意的是我这个没有对数据进行处理,主要针对的是单个数据,还没有针对batch数据,因此在数据送入lstm模型之前手动加了个torch.unsqueeze()强行扩展一个维度。
目前程序处在能跑通的阶段,后续有时间的话继续更新吧。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/151665.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号