java线程池springboot_springboot线程池的使用和扩展(转)「建议收藏」

java线程池springboot_springboot线程池的使用和扩展(转)「建议收藏」实战环境windowns10;jdk1.8;springboot1.5.9.RELEASE;开发工具:IntelliJIDEA;实战源码本次实战的源码可以在我的GitHub下载,地址:git@github.com:zq2599/blog_demos.git,项目主页:https://github.com/zq2599/blog_demos这里面有多个工程,本次用到的工程为threadpoold…

大家好,又见面了,我是你们的朋友全栈君。

实战环境

windowns10;

jdk1.8;

springboot 1.5.9.RELEASE;

开发工具:IntelliJ IDEA;

实战源码

本次实战的源码可以在我的GitHub下载,地址:git@github.com:zq2599/blog_demos.git,项目主页:https://github.com/zq2599/blog_demos

这里面有多个工程,本次用到的工程为threadpooldemoserver,如下图红框所示:

cab681fa846c2ccdc36b69f9ae25506e.png

实战步骤梳理

本次实战的步骤如下:

1. 创建springboot工程;

2. 创建Service层的接口和实现;

3. 创建controller,开发一个http服务接口,里面会调用service层的服务;

4. 创建线程池的配置;

5. 将Service层的服务异步化,这样每次调用都会都被提交到线程池异步执行;

6. 扩展ThreadPoolTaskExecutor,在提交任务到线程池的时候可以观察到当前线程池的情况;

创建springboot工程

用IntelliJ IDEA创建一个springboot的web工程threadpooldemoserver,pom.xml内容如下:

xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd”>

4.0.0

com.bolingcavalry

threadpooldemoserver

0.0.1-SNAPSHOT

jar

threadpooldemoserver

Demo project for Spring Boot

org.springframework.boot

spring-boot-starter-parent

1.5.9.RELEASE

UTF-8

UTF-8

1.8

org.springframework.boot

spring-boot-starter-web

org.springframework.boot

spring-boot-maven-plugin

创建Service层的接口和实现

创建一个service层的接口AsyncService,如下:

public interface AsyncService {

/**

* 执行异步任务

*/

void executeAsync();

}

对应的AsyncServiceImpl,实现如下:

@Service

public class AsyncServiceImpl implements AsyncService {

private static final Logger logger = LoggerFactory.getLogger(AsyncServiceImpl.class);

@Override

public void executeAsync() {

logger.info(“start executeAsync”);

try{

Thread.sleep(1000);

}catch(Exception e){

e.printStackTrace();

}

logger.info(“end executeAsync”);

}

}

这个方法做的事情很简单:sleep了一秒钟;

创建controller

创建一个controller为Hello,里面定义一个http接口,做的事情是调用Service层的服务,如下:

@RestController

public class Hello {

private static final Logger logger = LoggerFactory.getLogger(Hello.class);

@Autowired

private AsyncService asyncService;

@RequestMapping(“/”)

public String submit(){

logger.info(“start submit”);

//调用service层的任务

asyncService.executeAsync();

logger.info(“end submit”);

return “success”;

}

}

至此,我们已经做好了一个http请求的服务,里面做的事情其实是同步的,接下来我们就开始配置springboot的线程池服务,将service层做的事情都提交到线程池中去处理;

springboot的线程池配置

创建一个配置类ExecutorConfig,用来定义如何创建一个ThreadPoolTaskExecutor,要使用@Configuration和@EnableAsync这两个注解,表示这是个配置类,并且是线程池的配置类,如下所示:

@Configuration

@EnableAsync

public class ExecutorConfig {

private static final Logger logger = LoggerFactory.getLogger(ExecutorConfig.class);

@Bean

public Executor asyncServiceExecutor() {

logger.info(“start asyncServiceExecutor”);

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

//配置核心线程数

executor.setCorePoolSize(5);

//配置最大线程数

executor.setMaxPoolSize(5);

//配置队列大小

executor.setQueueCapacity(99999);

//配置线程池中的线程的名称前缀

executor.setThreadNamePrefix(“async-service-“);

// rejection-policy:当pool已经达到max size的时候,如何处理新任务

// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行

executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

//执行初始化

executor.initialize();

return executor;

}

}

注意,上面的方法名称为asyncServiceExecutor,稍后马上用到;

将Service层的服务异步化

打开AsyncServiceImpl.java,在executeAsync方法上增加注解@Async(“asyncServiceExecutor”),asyncServiceExecutor是前面ExecutorConfig.java中的方法名,表明executeAsync方法进入的线程池是asyncServiceExecutor方法创建的,如下:

@Override

@Async(“asyncServiceExecutor”)

public void executeAsync() {

logger.info(“start executeAsync”);

try{

Thread.sleep(1000);

}catch(Exception e){

e.printStackTrace();

}

logger.info(“end executeAsync”);

}

验证效果

将这个springboot运行起来(pom.xml所在文件夹下执行mvn spring-boot:run);

在浏览器用F5按钮快速多刷新几次;

在springboot的控制台看见日志如下:

2018-01-21 22:43:18.630 INFO 14824 — [nio-8080-exec-8] c.b.t.controller.Hello : start submit

2018-01-21 22:43:18.630 INFO 14824 — [nio-8080-exec-8] c.b.t.controller.Hello : end submit

2018-01-21 22:43:18.929 INFO 14824 — [async-service-1] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:18.930 INFO 14824 — [async-service-1] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

2018-01-21 22:43:19.005 INFO 14824 — [async-service-2] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:19.006 INFO 14824 — [async-service-2] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

2018-01-21 22:43:19.175 INFO 14824 — [async-service-3] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:19.175 INFO 14824 — [async-service-3] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

2018-01-21 22:43:19.326 INFO 14824 — [async-service-4] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:19.495 INFO 14824 — [async-service-5] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:19.930 INFO 14824 — [async-service-1] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:20.006 INFO 14824 — [async-service-2] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 22:43:20.191 INFO 14824 — [async-service-3] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

如上日志所示,我们可以看到controller的执行线程是”nio-8080-exec-8”,这是tomcat的执行线程,而service层的日志显示线程名为“async-service-1”,显然已经在我们配置的线程池中执行了,并且每次请求中,controller的起始和结束日志都是连续打印的,表明每次请求都快速响应了,而耗时的操作都留给线程池中的线程去异步执行;

扩展ThreadPoolTaskExecutor

虽然我们已经用上了线程池,但是还不清楚线程池当时的情况,有多少线程在执行,多少在队列中等待呢?这里我创建了一个ThreadPoolTaskExecutor的子类,在每次提交线程的时候都会将当前线程池的运行状况打印出来,代码如下:

public class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor {

private static final Logger logger = LoggerFactory.getLogger(VisiableThreadPoolTaskExecutor.class);

private void showThreadPoolInfo(String prefix){

ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor();

if(null==threadPoolExecutor){

return;

}

logger.info(“{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]”,

this.getThreadNamePrefix(),

prefix,

threadPoolExecutor.getTaskCount(),

threadPoolExecutor.getCompletedTaskCount(),

threadPoolExecutor.getActiveCount(),

threadPoolExecutor.getQueue().size());

}

@Override

public void execute(Runnable task) {

showThreadPoolInfo(“1. do execute”);

super.execute(task);

}

@Override

public void execute(Runnable task, long startTimeout) {

showThreadPoolInfo(“2. do execute”);

super.execute(task, startTimeout);

}

@Override

public Future> submit(Runnable task) {

showThreadPoolInfo(“1. do submit”);

return super.submit(task);

}

@Override

public Future submit(Callable task) {

showThreadPoolInfo(“2. do submit”);

return super.submit(task);

}

@Override

public ListenableFuture> submitListenable(Runnable task) {

showThreadPoolInfo(“1. do submitListenable”);

return super.submitListenable(task);

}

@Override

public ListenableFuture submitListenable(Callable task) {

showThreadPoolInfo(“2. do submitListenable”);

return super.submitListenable(task);

}

}

如上所示,showThreadPoolInfo方法中将任务总数、已完成数、活跃线程数,队列大小都打印出来了,然后Override了父类的execute、submit等方法,在里面调用showThreadPoolInfo方法,这样每次有任务被提交到线程池的时候,都会将当前线程池的基本情况打印到日志中;

修改ExecutorConfig.java的asyncServiceExecutor方法,将ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor()改为ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor(),如下所示:

@Bean

public Executor asyncServiceExecutor() {

logger.info(“start asyncServiceExecutor”);

//使用VisiableThreadPoolTaskExecutor

ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();

//配置核心线程数

executor.setCorePoolSize(5);

//配置最大线程数

executor.setMaxPoolSize(5);

//配置队列大小

executor.setQueueCapacity(99999);

//配置线程池中的线程的名称前缀

executor.setThreadNamePrefix(“async-service-“);

// rejection-policy:当pool已经达到max size的时候,如何处理新任务

// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行

executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

//执行初始化

executor.initialize();

return executor;

}

1

再次启动该工程,再浏览器反复刷新http://localhost:8080,看到的日志如下:

2018-01-21 23:04:56.113 INFO 15580 — [nio-8080-exec-1] c.b.t.e.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [99], completedTaskCount [85], activeCount [5], queueSize [9]

2018-01-21 23:04:56.113 INFO 15580 — [nio-8080-exec-1] c.b.t.controller.Hello : end submit

2018-01-21 23:04:56.225 INFO 15580 — [async-service-1] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 23:04:56.225 INFO 15580 — [async-service-1] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

2018-01-21 23:04:56.240 INFO 15580 — [nio-8080-exec-2] c.b.t.controller.Hello : start submit

2018-01-21 23:04:56.240 INFO 15580 — [nio-8080-exec-2] c.b.t.e.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [100], completedTaskCount [86], activeCount [5], queueSize [9]

2018-01-21 23:04:56.240 INFO 15580 — [nio-8080-exec-2] c.b.t.controller.Hello : end submit

2018-01-21 23:04:56.298 INFO 15580 — [async-service-2] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 23:04:56.298 INFO 15580 — [async-service-2] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

2018-01-21 23:04:56.372 INFO 15580 — [nio-8080-exec-3] c.b.t.controller.Hello : start submit

2018-01-21 23:04:56.373 INFO 15580 — [nio-8080-exec-3] c.b.t.e.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [101], completedTaskCount [87], activeCount [5], queueSize [9]

2018-01-21 23:04:56.373 INFO 15580 — [nio-8080-exec-3] c.b.t.controller.Hello : end submit

2018-01-21 23:04:56.444 INFO 15580 — [async-service-3] c.b.t.service.impl.AsyncServiceImpl : end executeAsync

2018-01-21 23:04:56.445 INFO 15580 — [async-service-3] c.b.t.service.impl.AsyncServiceImpl : start executeAsync

注意这一行日志:2. do submit,taskCount [101], completedTaskCount [87], activeCount [5], queueSize [9]

这说明提交任务到线程池的时候,调用的是submit(Callable task)这个方法,当前已经提交了101个任务,完成了87个,当前有5个线程在处理任务,还剩9个任务在队列中等待,线程池的基本情况一路了然;

至此,springboot线程池服务的实战就完成了,希望能帮您在工程中快速实现异步服务;

spring-boot 方法异步调用,自定义线程池配置使用

1、在主类中添加@EnableAsync注解:

@SpringBootApplication

@EnableScheduling

@EnableAsync

public class MySpringBootApplication {

private static Logger logger = LoggerFactory.getLogger(MySpringBootApplication.class);

public static void main(String[] args) {

SpringApplication.run(MySpringBootApplication.class, args);

logger.info(“My Spring Boot Application Started”);

}

2、创建一个AsyncTask类,在里面添加两个用@Async注解的task:

@Component

public classAsyncTask{

protected final Logger logger = LoggerFactory.getLogger(this.getClass());

@Async

publicFuture doTask1()throwsInterruptedException{

logger.info(“Task1 started.”);

long start = System.currentTimeMillis();

Thread.sleep(5000);

long end = System.currentTimeMillis();

logger.info(“Task1 finished, time elapsed: {} ms.”, end-start);

return new AsyncResult<>(“Task1 accomplished!”);

}

@Async

publicFuture doTask2()throwsInterruptedException{

logger.info(“Task2 started.”);

long start = System.currentTimeMillis();

Thread.sleep(3000);

long end = System.currentTimeMillis();

logger.info(“Task2 finished, time elapsed: {} ms.”, end-start);

return new AsyncResult<>(“Task2 accomplished!”);

}

}

3、万事俱备,开始测试:

public classTaskTestsextendsBasicUtClass{

@Autowired

private AsyncTask asyncTask;

@Test

public void AsyncTaskTest() throws InterruptedException, ExecutionException {

Future task1 = asyncTask.doTask1();

Future task2 = asyncTask.doTask2();

while(true) {

if(task1.isDone() && task2.isDone()) {

logger.info(“Task1 result: {}”, task1.get());

logger.info(“Task2 result: {}”, task2.get());

break;

}

Thread.sleep(1000);

}

logger.info(“All tasks finished.”);

}

}

测试结果:

2016-12-13 11:12:24,850:INFO main (AsyncExecutionAspectSupport.java:245) – No TaskExecutor bean found for async processing

2016-12-13 11:12:24,864:INFO SimpleAsyncTaskExecutor-1 (AsyncTask.java:22) – Task1 started.

2016-12-13 11:12:24,865:INFO SimpleAsyncTaskExecutor-2 (AsyncTask.java:34) – Task2 started.

2016-12-13 11:12:27,869:INFO SimpleAsyncTaskExecutor-2 (AsyncTask.java:39) – Task2 finished, time elapsed: 3001 ms.

2016-12-13 11:12:29,866:INFO SimpleAsyncTaskExecutor-1 (AsyncTask.java:27) – Task1 finished, time elapsed: 5001 ms.

2016-12-13 11:12:30,853:INFO main (TaskTests.java:23) – Task1 result: Task1 accomplished!

2016-12-13 11:12:30,853:INFO main (TaskTests.java:24) – Task2 result: Task2 accomplished!

2016-12-13 11:12:30,854:INFO main (TaskTests.java:30) – All tasks finished.

可以看到,没有自定义的Executor,所以使用缺省的TaskExecutor 。

前面是最简单的使用方法。如果想使用自定义的Executor,可以按照如下几步来:

1、新建一个Executor配置类,顺便把@EnableAsync注解搬到这里来:

@Configuration

@EnableAsync

public class ExecutorConfig {

/** Set the ThreadPoolExecutor’s core pool size. */

private int corePoolSize = 10;

/** Set the ThreadPoolExecutor’s maximum pool size. */

private int maxPoolSize = 200;

/** Set the capacity for the ThreadPoolExecutor’s BlockingQueue. */

private int queueCapacity = 10;

@Bean

public Executor mySimpleAsync() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(corePoolSize);

executor.setMaxPoolSize(maxPoolSize);

executor.setQueueCapacity(queueCapacity);

executor.setThreadNamePrefix(“MySimpleExecutor-“);

executor.initialize();

return executor;

}

@Bean

public Executor myAsync() {

ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();

executor.setCorePoolSize(corePoolSize);

executor.setMaxPoolSize(maxPoolSize);

executor.setQueueCapacity(queueCapacity);

executor.setThreadNamePrefix(“MyExecutor-“);

// rejection-policy:当pool已经达到max size的时候,如何处理新任务

// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行

executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

executor.initialize();

return executor;

}

}

这里定义了两个不同的Executor,第二个重新设置了pool已经达到max size时候的处理方法;同时指定了线程名字的前缀。

2、自定义Executor的使用:

@Component

public classAsyncTask{

protected final Logger logger = LoggerFactory.getLogger(this.getClass());

@Async(“mySimpleAsync”)

publicFuture doTask1()throwsInterruptedException{

logger.info(“Task1 started.”);

long start = System.currentTimeMillis();

Thread.sleep(5000);

long end = System.currentTimeMillis();

logger.info(“Task1 finished, time elapsed: {} ms.”, end-start);

return new AsyncResult<>(“Task1 accomplished!”);

}

@Async(“myAsync”)

publicFuture doTask2()throwsInterruptedException{

logger.info(“Task2 started.”);

long start = System.currentTimeMillis();

Thread.sleep(3000);

long end = System.currentTimeMillis();

logger.info(“Task2 finished, time elapsed: {} ms.”, end-start);

return new AsyncResult<>(“Task2 accomplished!”);

}

}

就是把上面自定义Executor的类名,放进@Async注解中。

3、(测试用例不变)测试结果:

2016-12-13 10:57:11,998:INFO MySimpleExecutor-1 (AsyncTask.java:22) – Task1 started.

2016-12-13 10:57:12,001:INFO MyExecutor-1 (AsyncTask.java:34) – Task2 started.

2016-12-13 10:57:15,007:INFO MyExecutor-1 (AsyncTask.java:39) – Task2 finished, time elapsed: 3000 ms.

2016-12-13 10:57:16,999:INFO MySimpleExecutor-1 (AsyncTask.java:27) – Task1 finished, time elapsed: 5001 ms.

2016-12-13 10:57:17,994:INFO main (TaskTests.java:23) – Task1 result: Task1 accomplished!

2016-12-13 10:57:17,994:INFO main (TaskTests.java:24) – Task2 result: Task2 accomplished!

2016-12-13 10:57:17,994:INFO main (TaskTests.java:30) – All tasks finished.

2016-12-13 10:57:18,064 Thread-3 WARN Unable to register Log4j shutdown hook because JVM is shutting down. Using SimpleLogger

可见,线程名字的前缀变了,两个task使用了不同的线程池了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149638.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • hadoop集群搭建(超详细版)「建议收藏」

    hadoop集群搭建(超详细版)「建议收藏」1.准备好需要安装的软件虚拟机VMware12.pro操作系统CentOS6.5远程控制虚拟机的终端SecureCRT8.12.在虚拟机中安装CentOS操作系统安装好虚拟机,图形界面如下图创建新的虚拟机,选择自定义(高级),点击下一步虚拟机硬件兼容性默认,浏览需要安装的CentOS6.5镜像文件自定义用户名和密码(用于登录)设置虚…

    2022年10月15日
  • ios动态视频_手机怎么暂停gif

    ios动态视频_手机怎么暂停gif其实网上GitHub有很多第三方的,但是用起来比较麻烦,这里介绍最简单的一种方式,自己就可以实现,(点击按钮开始播放动态图)1,集成SDWebImage之后,引入头文件#import"U

  • git查看当前分支所属

    git查看当前分支所属

    2021年10月22日
  • activity(工作流)初步学习记录

    activity(工作流)初步学习记录1.概念工作流(Workflow),就是“业务过程的部分或整体在计算机应用环境下的自动化”,它主要解决的是“使在多个参与者之间按照某种预定义的规则传递文档、信息或任务的过程自动进行,从而实现某个预期

  • 安装tensorflow GPU版本–tensorflow-gpu版本与CUDA版本对应关系(持续更新,目前到TF2.7)「建议收藏」

    安装tensorflow GPU版本–tensorflow-gpu版本与CUDA版本对应关系(持续更新,目前到TF2.7)「建议收藏」一、WIndows安装GPU版本tensorflow注意一下几个问题一般就不会出错(1)确定自己要安装哪个版本的tensorflow-gpu;(1)根据自己要装的tensorflow-gpu版本确定要下载的CUDA版本;(2)根据要安装的CUDA版本确定要下载的Cudnn版本。二、tensorflow-gpu版本与CUDA版本对应关系不同版本的tensorflow-gpu与CUDA对应关…

  • Enterprise Library概述

    Enterprise Library概述Webcast网络讲座:企业库系统课程企业库(EnterpriseLibrary)是微软的模式与实践(Patterns&Practices)的下一代应用程序块(ApplicationBlocks)。该企业库的设计思想是为了协助开发商解决企业级应用开发过程中所面临的一系列共性的问题,如安全(Security)、日志(Logging)、数据访问(DataA…

    2022年10月20日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号