matlab中wavedec2函数,[转载]小波滤波器–wavedec2函数

matlab中wavedec2函数,[转载]小波滤波器–wavedec2函数wavedec2函数:1.功能:实现图像(即二维信号)的多层分解.多层,即多尺度.2.格式:[c,s]=wavedec2(X,N,’wname’)[c,s]=wavedec2(X,N,Lo_D,Hi_D)(我不讨论它)3.参数说明:对图像X用wname小波基函数实现N层分解,这里的小波基函数应该根据实际情况选择,具体办法可以:db1、db2、……db45、haar.输出为c,s.c为各层分…

大家好,又见面了,我是你们的朋友全栈君。

wavedec2函数:

1.功能:实现图像(即二维信号)的多层分解.多层,即多尺度.

2.格式:[c,s]=wavedec2(X,N,’wname’)

[c,s]=wavedec2(X,N,Lo_D,Hi_D)(我不讨论它)

3.参数说明:对图像X用wname小波基函数实现N层分解,

这里的小波基函数应该根据实际情况选择,具体办法可以:db1、db2、……db45、haar.

输出为c,s.c为各层分解系数,s为各层分解系数长度,也就是大小.

4.c的结构:c=[A(N)|H(N)|V(N)|D(N)|H(N-1)|V(N-1)|D(N-1)|H(N-2)|V(N-2)|D(N-2)|…|H(1)|V(1)|D(1)]

备注:c是一个行向量,size为:1*(size(X)),(e.g,X=256*256,then

c大小为:1*(256*256)=1*65536

A(N)代表第N层低频系数,

H(N)|V(N)|D(N)代表第N层高频系数,分别是水平,垂直,对角高频,

……

直至H(1)|V(1)|D(1).

5.s的结构:是储存各层分解系数长度

即第一行是A(N)的长度,

第二行是H(N)|V(N)|D(N)|的长度,

第三行是H(N-1)|V(N-1)|D(N-1)的长度,

……

倒数第二行是H(1)|V(1)|D(1)长度,

最后一行是X的长度(大小)

备注:size为(N+2)*2

wavedec2

Multilevel 2-D wavelet decomposition Syntax [C,S] =

wavedec2(X,N,’wname’)

[C,S] = wavedec2(X,N,Lo_D,Hi_D)

Description wavedec2 is a two-dimensional wavelet analysis

function.

[C,S] = wavedec2(X,N,’wname’) returns the wavelet decomposition

of the matrix X at level N, using the wavelet named in string

‘wname’ (see wfilters for more information).

Outputs are the decomposition vector C and the corresponding

bookkeeping matrix S. N must be a strictly positive integer (see

wmaxlev for more information).

Instead of giving the wavelet name, you can give the

filters.

For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition

low-pass filter and Hi_D is the decomposition high-pass filter.

Vector C is organized as C = [ A(N) | H(N) | V(N) | D(N) | …

H(N-1) | V(N-1) | D(N-1) | … | H(1) | V(1) | D(1) ].

where A, H, V, D, are row vectors such that A = approximation

coefficients H = horizontal detail coefficients V = vertical detail

coefficients D = diagonal detail coefficients Each vector is the

vector column-wise storage of a matrix.

Matrix S is such that S(1,:) = size of approximation

coefficients(N) S(i,:) = size of detail coefficients(N-i+2) for i =

2, …N+1 and S(N+2,:) = size(X)

Examples

% The current extension mode is zero-padding (see dwtmode).

% Load original image.

load woman;

% X contains the loaded image.

% Perform decomposition at level 2

% of X using db1.

[c,s] = wavedec2(X,2,’db1′);

% Decomposition structure organization.

sizex = size(X)

sizex =

256

256

sizec = size(c)

sizec =

1

65536

val_s =

s

val_s =

64 64

64 64

128

128

256 256

Algorithm For images, an algorithm similar to the one-dimensional

case is possible for two-dimensional wavelets and scaling functions

obtained from one-dimensional ones by tensor product. This kind of

two-dimensional DWT leads to a decomposition of approximation

coefficients at level j in four components: the approximation at

level j+1, and the details in three orientations (horizontal,

vertical, and diagonal). The following chart describes the basic

decomposition step for images: So, for J=2, the two-dimensional

wavelet tree has the form See Alsodwt, waveinfo, waverec2,

wfilters, wmaxlev ReferencesDaubechies, I. (1992), Ten lectures on

wavelets, CBMS-NSF conference series in applied mathematics. SIAM

Ed. Mallat, S. (1989), “A theory for multiresolution signal

decomposition: the wavelet representation,” IEEE Pattern Anal. and

Machine Intell., vol. 11, no. 7, pp. 674-693. Meyer, Y. (1990),

Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation:

Wavelets and operators, Cambridge Univ. Press. 1993.

二维小波变换的函数

————————————————-

函数名 函数功能

—————————————————

dwt2 二维离散小波变换-单尺度

wavedec2 二维离散小波分解-多尺度 idwt2 二维离散小波反变换-单尺度

waverec2 二维信号的多层小波重构-多尺度

wrcoef2 由多层小波分解重构某一层的分解信号

upcoef2 由多层小波分解重构近似分量或细节分量

detcoef2 提取二维信号小波分解的细节分量

appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构

dwtpet2 二维周期小波变换

idwtper2 二维周期小波反变换

————————————————————-

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/149441.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • sublime text3 激活码 2021【2021最新】[通俗易懂]

    (sublime text3 激活码 2021)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

  • jQuery -> 获取/设置/删除DOM元素的属性

    jQuery -> 获取/设置/删除DOM元素的属性

    2021年11月23日
  • 如何利用净推荐值(NPS)测量用户忠诚度?

    如何利用净推荐值(NPS)测量用户忠诚度?用户满意度是每个企业都非常关心的问题,满意度水平高的企业往往也有着良好的营收效益。相反,用户满意度较差的企业,也可以通过用户满意度的相关调研,深入了解自己的不足之处,哪些方面有待改进。如何通过简单的数据指标,科学有效地测量出用户满意度呢?今天我们将为大家介绍一种调研用户满意度的常用方法——净推荐值(NPS)NPS是什么NPS即净推荐值(NetPromoterScore),是一种计量客户将会向其他人推荐企业或服务可能性的指数。是目前最流行的顾客忠诚度分析指标。NPS净推荐值的数据收集方

  • laravel-事件监听-核心解读「建议收藏」

    laravel-事件监听-核心解读「建议收藏」laravel-事件监听-核心解读

  • spdlog学习笔记

    spdlog学习笔记说明:所有内容翻译自spdlog的wiki,受英语水平所限,有所错误或失真在所难免,如果您有更好的建议,请在博文下留言。线程安全spdlog::命名空间下的是线程安全的,当loggers在不同的线程同时执行时,下述函数不应该被调用:spdlog::set_error_handler(log_err_handler);//orlogger->set_error_handler(…

  • k8s中pod的状态包括_k8s pod状态

    k8s中pod的状态包括_k8s pod状态文章目录第五章 Pod详解5.1 Pod介绍5.1.1 Pod结构5.1.2 Pod定义5.2 Pod配置5.2.1 基本配置5.2.2 镜像拉取5.2.3 启动命令5.2.4 环境变量5.2.5 端口设置5.2.6 资源配额5.3 Pod生命周期5.3.1 创建和终止5.3.2 初始化容器5.3.3 钩子函数5.3.4 容器探测5.3.5 重启策略5.4 Pod调度5.4.1 定向调度5.4.2 亲和性调度NodeAffinityPodAffinityPodAntiAffinity5.4.3 污点和容忍

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号