Dijkstra算法时间复杂度分析[通俗易懂]

Dijkstra算法时间复杂度分析[通俗易懂]文章目录Dijkstra算法的思路与关键点Dijkstra算法的时间复杂度之前一直默认Dijkstra算法时间复杂度为o(n2)o(n^{2})o(n2),没有思考过具体的时间复杂度,今天把这个弄清楚。Dijkstra算法的思路与关键点思路:广度优先+松弛所有点分为两个集合SSS和TTT,SSS最开始只包括源点sss,剩余点都位于TTT。SSS集合表示已经计算出最短路径的点集合,TTT表示尚未计算出最短路径的点集合。每次从集合TTT中选出一个与集合SSS距离最短的点vvv,将点vvv加

大家好,又见面了,我是你们的朋友全栈君。

之前一直默认Dijkstra算法时间复杂度为
o ( n 2 ) o(n^{2}) o(n2),没有思考过具体的时间复杂度,今天把这个弄清楚。

Dijkstra算法的思路与关键点

  • 思路:广度优先 + 松弛
  1. 所有点分为两个集合 S S S T T T S S S最开始只包括源点 s s s,剩余点都位于 T T T S S S集合表示已经计算出最短路径的点集合, T T T表示尚未计算出最短路径的点集合。
  2. 每次从集合 T T T中选出一个与集合 S S S距离最短的点 v v v,将点 v v v加入集合 S S S。通过点 v v v对集合 T T T中的点进行松弛,即更新 T T T中点的最短距离。
  3. 不断重复此步骤2,直至T集合中无法找出与集合 S S S相邻的点。
  • 关键点:每次从 T T T中选出的点,距离源点的距离一定不会被松弛,因此每次选出的点都将加入集合 S S S.。

Dijkstra算法的时间复杂度

设图中的节点数为 n n n,边个数为 m m m,平均每个点的边数 k = m / n k=m/n k=m/n

算法步骤2需要执行 n − 1 n-1 n1次,每次从集合 T T T中选出一个与集合 S S S相距最近的点,具体实现方式有4种。

  • 顺序遍历集合 T T T
  • 使用二叉堆作为优先队列
  • 使用二项堆作为优先队列
  • 使用斐波那契堆作为优先队列

前提知识:二叉堆,二项堆,斐波那契堆的各种操作时间复杂度
在这里插入图片描述

对于Dijkstra算法,给出时间复杂度的计算公式
( n − 1 ) ∗ ( T E X T R A C T − M I N + T D E L E T E + T D E C R E A S E − K E Y ∗ k ) (n-1)*(T_{EXTRACT-MIN}+T_{DELETE}+T_{DECREASE-KEY}*k) (n1)(TEXTRACTMIN+TDELETE+TDECREASEKEYk)

下面对于上述四种方式,分别计算其时间复杂度。

  1. 时 间 复 杂 度 = ( n − 1 ) ∗ ( T E X T R A C T − M I N + T D E L E T E + T D E C R E A S E − K E Y ∗ k ) = ( n − 1 ) ∗ ( n + 1 + k ) = n ∗ ( n + k ) = n 2 + m = n 2 \begin{aligned} 时间复杂度&=(n-1)*(T_{EXTRACT-MIN}+T_{DELETE}+T_{DECREASE-KEY}*k) \\ &=(n-1)*(n+1+k)\\ &=n*(n+k)\\ &=n^{2}+m &=n^{2} \end{aligned} =(n1)(TEXTRACTMIN+TDELETE+TDECREASEKEYk)=(n1)(n+1+k)=n(n+k)=n2+m=n2
  2. 时 间 复 杂 度 = ( n − 1 ) ∗ ( T E X T R A C T − M I N + T D E L E T E + T D E C R E A S E − K E Y ∗ k ) = ( n − 1 ) ∗ ( 1 + log ⁡ n + k ∗ log ⁡ ( n ) ) = n ∗ ( 1 + k ) log ⁡ n = ( n + m ) log ⁡ n \begin{aligned} 时间复杂度&=(n-1)*(T_{EXTRACT-MIN}+T_{DELETE}+T_{DECREASE-KEY}*k) \\ &=(n-1)*(1+\log{n}+k*\log(n))\\ &=n*(1+k)\log{n}\\ &=(n+m)\log{n} \end{aligned} =(n1)(TEXTRACTMIN+TDELETE+TDECREASEKEYk)=(n1)(1+logn+klog(n))=n(1+k)logn=(n+m)logn
  3. 时 间 复 杂 度 = ( n − 1 ) ∗ ( T E X T R A C T − M I N + T D E L E T E + T D E C R E A S E − K E Y ∗ k ) = ( n − 1 ) ∗ ( log ⁡ n + log ⁡ n + k ∗ log ⁡ ( n ) ) = n ∗ ( 2 + k ) log ⁡ n = ( 2 n + m ) log ⁡ n = ( n + m ) log ⁡ n \begin{aligned} 时间复杂度&=(n-1)*(T_{EXTRACT-MIN}+T_{DELETE}+T_{DECREASE-KEY}*k) \\ &=(n-1)*(\log{n}+\log{n}+k*\log(n))\\ &=n*(2+k)\log{n}\\ &=(2n+m)\log{n}\\ &=(n+m)\log{n} \end{aligned} =(n1)(TEXTRACTMIN+TDELETE+TDECREASEKEYk)=(n1)(logn+logn+klog(n))=n(2+k)logn=(2n+m)logn=(n+m)logn
  4. 时 间 复 杂 度 = ( n − 1 ) ∗ ( T E X T R A C T − M I N + T D E L E T E + T D E C R E A S E − K E Y ∗ k ) = ( n − 1 ) ∗ ( log ⁡ n + log ⁡ n + k ∗ 1 ) = n ∗ ( 2 log ⁡ n + k ) = 2 n log ⁡ n + m = n log ⁡ n + m \begin{aligned} 时间复杂度&=(n-1)*(T_{EXTRACT-MIN}+T_{DELETE}+T_{DECREASE-KEY}*k) \\ &=(n-1)*(\log{n}+\log{n}+k*1)\\ &=n*(2\log{n}+k)\\ &=2n\log{n}+m\\ &=n\log{n}+m\\ \end{aligned} =(n1)(TEXTRACTMIN+TDELETE+TDECREASEKEYk)=(n1)(logn+logn+k1)=n(2logn+k)=2nlogn+m=nlogn+m
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146452.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Window系统内核版本号及其查看方法「建议收藏」

    Window系统内核版本号及其查看方法「建议收藏」一.WindowsNTWindwosNT是一系列操作系统的总称。WindowsNT(NewTechnology)是Microsoft在1993年推出的面向工作站、网络服务器和大型计算机的网络操作系统,也可做PC操作系统。它与通信服务紧密集成,基于OS/2NT基础编制。OS/2由微软和IBM联合研制,分为微软的MicrosoftOS/2NT与IBM的IBMOS/2。

  • 程序员本地网站_程序员实用工具网站

    程序员本地网站_程序员实用工具网站程序员本地网站

  • web安全测试_web测试的主要测试内容

    web安全测试_web测试的主要测试内容1.1什么是web安全测试?Web安全测试就是要提供证据表明,在面对敌意和恶意输入的时候,web系统应用仍然能够充分地满足它的需求1.2为什么进行Web安全测试2005年06月,CardSystems,黑客恶意侵入了它的电脑系统,窃取了4000万张信用卡的资料。2011年12月,国内最大的开发者社区CSDN被黑客在互联网上公布了600万注册用户的数据;黑客随后陆续公布了网易、人人、天涯、猫扑等多家大型网站的数据信息。2014年12月,大量12306用户数据被泄露,被泄露的数据达131653条,包括

  • JAVA转大数据的第一天

    JAVA转大数据的第一天java转大数据的第一天

  • TimeTrack_cycletime和takttime的区别

    TimeTrack_cycletime和takttime的区别使用TimerTask可以方便的实现定时任务的功能,但是如果使用不当,反而会带来隐患。在使用TimerTask时,TimerTask中的代码必须要做异常处理,否则产生异常的时候,就挂掉了。特别像使用MQ发送数据的时候,不会显式的要求你捕获异常,如果你忘记了,那么在某个时刻MQ异常的时候(比如网络异常),在发送数据到MQ失败的时候,TimerTask就挂掉了。比如如下代码:Appli…

  • pyqt退出窗口_win10电脑软件闪退

    pyqt退出窗口_win10电脑软件闪退1.使用qtdesigner创建窗口界面这个都很熟悉了,就不重复说明了。(自行百度)2.pyqt将.ui文件转成python代码cd到.ui文件的目录,使用指令即可完成。得到一个py文件(一个类)红色部分是我自己加上去的,只是为了更好看懂代码,调试代码。3.运行pyqt生成的python代码,生成界面这里,需要添加几行代码!直接在Ui_Dialog类的py文件尾部添加如下代码:if__name__==”__main__”:app=QApplication(

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号