4.4.2分类模型评判指标(一) – 混淆矩阵(Confusion Matrix)

4.4.2分类模型评判指标(一) – 混淆矩阵(Confusion Matrix)简介混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。数据分析与挖掘体系位置混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于…

大家好,又见面了,我是你们的朋友全栈君。

简介

混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

一句话解释版本:

混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。

 

 

数据分析与挖掘体系位置

混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

在分类型模型评判的指标中,常见的方法有如下三种:

  1. 混淆矩阵(也称误差矩阵,Confusion Matrix)
  2. ROC曲线
  3. AUC面积

本篇主要介绍第一种方法,即混淆矩阵,也称误差矩阵。

此方法在整个数据分析与挖掘体系中的位置如下图所示。

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

 

混淆矩阵的定义

混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。

以分类模型中最简单的二分类为例,对于这种问题,我们的模型最终需要判断样本的结果是0还是1,或者说是positive还是negative。

我们通过样本的采集,能够直接知道真实情况下,哪些数据结果是positive,哪些结果是negative。同时,我们通过用样本数据跑出分类型模型的结果,也可以知道模型认为这些数据哪些是positive,哪些是negative。

因此,我们就能得到这样四个基础指标,我称他们是一级指标(最底层的):

  • 真实值是positive,模型认为是positive的数量(True Positive=TP)
  • 真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第二类错误(Type II Error)
  • 真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第一类错误(Type I Error)
  • 真实值是negative,模型认为是negative的数量(True Negative=TN)

将这四个指标一起呈现在表格中,就能得到如下这样一个矩阵,我们称它为混淆矩阵(Confusion Matrix):

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

混淆矩阵的指标

预测性分类模型,肯定是希望越准越好。那么,对应到混淆矩阵中,那肯定是希望TP与TN的数量大,而FP与FN的数量小。所以当我们得到了模型的混淆矩阵后,就需要去看有多少观测值在第二、四象限对应的位置,这里的数值越多越好;反之,在第一、三象限对应位置出现的观测值肯定是越少越好。

二级指标

但是,混淆矩阵里面统计的是个数,有时候面对大量的数据,光凭算个数,很难衡量模型的优劣。因此混淆矩阵在基本的统计结果上又延伸了如下4个指标,我称他们是二级指标(通过最底层指标加减乘除得到的):

  • 准确率(Accuracy)—— 针对整个模型
  • 精确率(Precision)
  • 灵敏度(Sensitivity):就是召回率(Recall)
  • 特异度(Specificity)

我用表格的方式将这四种指标的定义、计算、理解进行了汇总:

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

通过上面的四个二级指标,可以将混淆矩阵中数量的结果转化为0-1之间的比率。便于进行标准化的衡量。

在这四个指标的基础上在进行拓展,会产令另外一个三级指标

 

三级指标

这个指标叫做F1 Score。他的计算公式是:

 

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

其中,P代表Precision,R代表Recall。

F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

 

 

混淆矩阵的实例

当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。

一下面的混淆矩阵为例,我们的模型目的是为了预测样本是什么动物,这是我们的结果:

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

通过混淆矩阵,我们可以得到如下结论:

Accuracy

在总共66个动物中,我们一共预测对了10 + 15 + 20=45个样本,所以准确率(Accuracy)=45/66 = 68.2%。

以猫为例,我们可以将上面的图合并为二分问题:

4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

Precision

所以,以猫为例,模型的结果告诉我们,66只动物里有13只是猫,但是其实这13只猫只有10只预测对了。模型认为是猫的13只动物里,有1条狗,两只猪。所以,Precision(猫)= 10/13 = 76.9%

Recall

以猫为例,在总共18只真猫中,我们的模型认为里面只有10只是猫,剩下的3只是狗,5只都是猪。这5只八成是橘猫,能理解。所以,Recall(猫)= 10/18 = 55.6%

Specificity

以猫为例,在总共48只不是猫的动物中,模型认为有45只不是猫。所以,Specificity(猫)= 45/48 = 93.8%。

虽然在45只动物里,模型依然认为错判了6只狗与4只猫,但是从猫的角度而言,模型的判断是没有错的。

(这里是参见了Wikipedia,Confusion Matrix的解释,https://en.wikipedia.org/wiki/Confusion_matrix)

F1-Score

通过公式,可以计算出,对猫而言,F1-Score=(2 * 0.769 *  0.556)/( 0.769 +  0.556) = 64.54%

同样,我们也可以分别计算猪与狗各自的二级指标与三级指标值。

 

 

ROC曲线在R中的实现

library(ISLR)

cor(Smarket[,-9])
attach(Smarket)

# logistic Model
model_LR <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
                family = binomial,
                data = Smarket)

# Make prediction 
prob_LR <- predict(model_LR, type = 'response', newdata = Smarket[1:300,])
prob_LR <- predict(model_LR, type = 'response', newdata = Smarket[,])


# create a vector of class predictions based on wether the predicted probability of a market increase is greater than or less than 0.5
pred_LR <- rep("Down" , 1250)          
pred_LR[prob_LR > 0.5] = 'Up'        

# Confusion Matrix
table(pred_LR, Direction)

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/146302.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)[通俗易懂]

    数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)

  • 利用MATLAB 2016a进行BP神经网络的预测(含有神经网络工具箱)「建议收藏」

    利用MATLAB 2016a进行BP神经网络的预测(含有神经网络工具箱)「建议收藏」利用MATLAB2016a进行BP神经网络的预测(含有神经网络工具箱)   最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来

  • 消息队列 rabbitmq面试题(中间件面试题)

    文章目录为什么使用MQ?MQ的优点消息队列有什么优缺点?RabbitMQ有什么优缺点?你们公司生产环境用的是什么消息中间件?Kafka、ActiveMQ、RabbitMQ、RocketMQ有什么优缺点?MQ有哪些常见问题?如何解决这些问题?什么是RabbitMQ?rabbitmq的使用场景RabbitMQ基本概念RabbitMQ的工作模式如何保证RabbitMQ消息的顺序性?消息如何分发?消…

  • ioctl函数操作「建议收藏」

    ioctl函数操作「建议收藏」第十六章 ioctl操作 传统上ioctl函数是用于那些普遍使用,但不适合归入其他类别的任何特性的系统接口。Posix去掉了ioctl,它通过创建特殊的其功能已被Posix标准化的包裹函数来代替ioctl。这一章介绍和网络编程有关的ioctl操作。 1.ioctl函数 intioctl(intd,intrequest,…);

    2022年10月17日
  • html5手机端的点击弹出侧边滑动菜单代码

    效果预览:http://hovertree.com/texiao/html5/19/本效果适用于移动设备,可以使用手机等浏览效果。源码下载:http://hovertree.com/h/bjaf/mw

    2021年12月21日
  • Java中的重载、重写和重构的区别

    Java中的重载、重写和重构的区别1、重载重载(overloaded):重载就是在同一个类中允许同时存在一个以上的同名方法,只要这些方法的参数个数或类型不同即可。我们知道构造方法的名称已经由类名决定,所以构造方法只有一个名称,但如果希望以不同的方式来实例化对象,就需要使用多个构造方法来完成。由于这些构造方法都需要根据类名进行命名,为了让方法名相同而形参不同的构造方法同时存在,必须用到“方法重载”,虽然方法重载起源于构造方…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号