多项式曲线拟合之最小二乘法推导[通俗易懂]

多项式曲线拟合之最小二乘法推导[通俗易懂]1、多项式曲线拟合之最小二乘法1.1问题来源1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的已有观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。只有时年24岁的高斯所计算的谷神星的轨道,被奥地利天文学家海因里希·奥尔伯斯的观测所证实,使天文界从此可以预测到谷神星的精确位置。同样的方法也产生了哈雷彗星等很多天文学成果。高斯使用的方法就是最小二乘法,

大家好,又见面了,我是你们的朋友全栈君。

1、多项式曲线拟合之最小二乘法

1.1 问题来源

1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的已有观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。只有时年24岁的高斯所计算的谷神星的轨道,被奥地利天文学家海因里希·奥尔伯斯的观测所证实,使天文界从此可以预测到谷神星的精确位置。同样的方法也产生了哈雷彗星等很多天文学成果。高斯使用的方法就是最小二乘法,该方法发表于1809年他的著作《天体运动论》中。

1.2 数学本质

采用最小二乘法进行曲线拟合的本质是通过样本集构造范德蒙德矩阵,将一元n次多项式非线性回归问题转化为n元一次线性回归问题。

给定一组数据点p_i(x_i,y_i)$,其中i=1,2,...m 。求近似曲线 y=\varphi(x),使其与 y=f(x)的偏差最小。

常见的曲线拟合方法:

  • 使偏差绝对值之和最小

\mathop{min}_{\varphi}\sum_{i=1}^m{\left|\delta_i\right|} = \sum_{i=1}^m{\left|\varphi(x_i)-y_i\right|}

  • 使最大的偏差绝对值最小

\mathop{min}_{\varphi}\ \mathop{max}_{i}{\left|\delta_i\right|} = \left|\varphi(x_i)-y_i\right|

  • 使偏差平方和最小

\mathop{min}_{\varphi}\sum_{i=1}^m{\delta_i^2} = \sum_{i=1}^m(\varphi(x_i)-y_i)^2

其中按照偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

1.3 问题定义

minimize \qquad \parallel{Ax-b}\parallel_2^2

1.4 问题特性

  • 已是一种成熟的工业技术
  • 已有可靠和高效的算法解决此类问题
  • 存在可解析解: x^* = ({\mathbf{A}^\mathrm{T}A)}^{-1}{\mathbf{A}^\mathrm{T}b}

1.5 数学推导

  • 设定拟合多项式为:y = a_0+a_1{x}+\dots+{a_k}{x^k}
  • 偏差平方和表示如下:

R^2 = \sum_{i=1}^n[y_i - (a_0+a_1{x_i}+\dots+{a_k}{x_i}^k)]^2

  • 对右侧等式求\alpha_i偏导数,以求的符合条件的\alpha值:

\alpha_0 求偏导:

-2\sum_{i=1}^n[y_i - (a_0+a_1{x_i}+\dots+{a_k}{x_i}^k)] = 0

\alpha_1求偏导:

-2\sum_{i=1}^n[y_i - (a_0+a_1{x_i}+\dots+{a_k}{x_i}^k)]{x_i} = 0

\alpha_2 求偏导:

-2\sum_{i=1}^n[y_i - (a_0+a_1{x_i}+\dots+{a_k}{x_i}^k)]{x_i}^2 = 0

\vdots

\alpha_k 求偏导:

-2\sum_{i=1}^n[y_i - (a_0+a_1{x_i}+\dots+{a_k}{x_i}^k)]{x_i}^k = 0

  • 等式化简

a_0{n}+a_1\sum_{i=1}^n{x_i}+\dots+a_k\sum_{i=1}^n{x_i}^k = \sum_{i=1}^n{y_i}

a_0\sum_{i=1}^n{x_i}+a_1\sum_{i=1}^n{x_i}^2+\dots+a_k\sum_{i=1}^n{x_i}^{k+1} = \sum_{i=1}^n{x_i}{y_i}

a_0\sum_{i=1}^n{x_i}^2+a_1\sum_{i=1}^n{x_i}^3+\dots+a_k\sum_{i=1}^n{x_i}^{k+2} = \sum_{i=1}^n{x_i}^2{y_i}

a_0\sum_{i=1}^n{x_i}^k+a_1\sum_{i=1}^n{x_i}^{k+1}+\dots+a_k\sum_{i=1}^n{x_i}^{k+k} = \sum_{i=1}^n{x_i}^k{y_i}

  • 矩阵表示

\left[ \begin{array}{cccc} n & \sum_{i=1}^n{x_i} & \cdots & \sum_{i=1}^n{x_i}^k\\ \sum_{i=1}^n{x_i} & \sum_{i=1}^n{x_i}^2 & \cdots & \sum_{i=1}^n{x_i}^{k+1}\\ \vdots & \vdots & \ddots & \vdots\\ \sum_{i=1}^n{x_i}^k & \sum_{i=1}^n{x_i}^{k+1} & \cdots & \sum_{i=1}^n{x_i}^{k+k}\\ \end{array} \right] \left[ \begin{array}{cccc} a_0\\ a_1\\ \vdots\\ a_k\\ \end{array} \right] = \left[ \begin{array}{cccc} \sum_{i=1}^n{y_i}\\ \sum_{i=1}^n{x_i}{y_i}\\ \vdots\\ \sum_{i=1}^n{x_i}^k{y_i}\\ \end{array} \right]

  • 矩阵简化

X= \left[ \begin{array}{cccc} 1 & x_1 & x_1^2 & \cdots x_1^k \\ 1 & x_2 & x_2^2 & \cdots x_2^k \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots x_n^k \\ \end{array} \right] \qquad Y= \left[ \begin{array}{cccc} y_1 \\ y_2 \\ \cdots \\ y_n \\ \end{array} \right]

上述矩阵可简化为: \mathbf{X}^\mathrm{T}Xa=\mathbf{X}^\mathrm{T}Y

  • 结果

a=(\mathbf{X}^\mathrm{T}*X)^{-1}*\mathbf{X}^\mathrm{T}*Y

矩阵a中对应的项则是拟合曲线的各项系数。

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/145554.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • NHibernate 缓存

    NHibernate 缓存NHibernate支持两种级别的缓存,即一级缓存以及二级缓存。一级缓存一级缓存就是ISession缓存,在ISession的生命周期内可用,多个ISession之间不能共享缓存的对象,通过ISessionFactory创建的ISession默认支持一级缓存,不需要特殊的配置。在NHibernate的参考文档中,对ISession的描述如下:

  • C++ 数值与 string 的相互转换

    C++ 数值与 string 的相互转换使用函数模板将基本数据类型(整型、字符型、实型、布尔型)转换成string。//ostringstream对象用来进行格式化的输出,常用于将各种类型转换为string类型//ostringstream只支持<<操作符template<typenameT>stringtoString(constT&t){ostringstreamoss;//创建一个格式化输出流

  • 第一期打卡送书5本+1个腾讯视频VIP月卡(11月1日-12月1日)

    第一期打卡送书5本+1个腾讯视频VIP月卡(11月1日-12月1日)

    2020年11月14日
  • vue关于页面刷新的几个方式[通俗易懂]

    vue关于页面刷新的几个方式[通俗易懂]在写项目的时候会遇到需要刷新页面重新获取数据,浅浅总结了一下几种方案。1.this.$router.go(0)强制刷新页面,会出现一瞬间的白屏,用户体验感不好。2.location.reload()也是强制刷新页面,和第一种方法一样,会造成一瞬间的白屏,用户体验感不好。3.跳转空白页再跳回原页面在需要页面刷新的地方写上:this.$router.push(’/emptyPage’),跳转到一个空白页。在emptyPage.vue里beforeRouteEnter钩子里控制页面跳转,从而达到刷新

    2022年10月16日
  • 一分钟详解「手眼标定」基本原理[通俗易懂]

    一分钟详解「手眼标定」基本原理[通俗易懂]原文首发于微信公众号【视觉IMAX】。一前言机器人的视觉系统分为固定场景视觉系统和运动的「手-眼」视觉系统。摄像机与机器人的手部末端,构成手眼视觉系统。根据摄像机与机器人相互位置的不同,手眼视觉系统分为Eye-in-Hand系统和Eye-to-Hand系统。Eye-in-Hand系统的摄像机安装在机器人手部末端(end-effector),在机器人工作过程中随机器人一起运动。Eye-to-…

  • java random.nextint_java Random.nextInt()方法的具体使用

    java random.nextint_java Random.nextInt()方法的具体使用licintnextInt(intn)该方法的作用是生成一个随机的int值,该值介于[0,n)的区间,也就是0到n之间的随机int值,包含0而不包含n。直接上代码:packageorg.xiaowu.random.demo;importjava.util.Random;importorg.junit.Test;publicclassRandomDemo{@Testpublicv…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号