大家好,又见面了,我是你们的朋友全栈君。
一致性检验和配对卡方检验的SPSS实例操作图文详解,配对计数资料的卡方检验。
一、问题与数据
有两种方法可用于诊断某种癌症,A方法简单易行,成本低,患者更容易接受,B方法结果可靠,但操作繁琐,患者配合困难。某研究选择了53例待诊断的门诊患者,每个患者分别用A和B两种方法进行诊断(表1),判断两种方法诊断癌症有无差别,A方法是否可以代替B方法。
表1 进口药和国产药治疗效果
二、对数据结构的分析
之前介绍过成组设计的列联表,它的行变量和列变量代表的是一个事物的两个不同属性,以我们举过的A药和B药治疗急性心肌梗死患者疗效比较为例,例子中行变量“药物”和列变量“转归”是患者的两个不同特征。
但是配对设计的列联表却有些不同,它的行变量和列变量代表的是一个事物的同一属性,只是对这个属性的判断方法不同而已。如表1所示,行和列均指的是患者是否患有癌症,所不同的是一个是A方法,另一个是B方法。这种列联表最大的特点是行和列数目永远都是一样的。此时,再用成组计数资料的χ2检验就不合适了。这里我们就要用到Kappa一致性检验和配对χ2检验(McNemar检验)。
为什么同一配对设计计数资料咋还有两种检验方法呢?其实这两种方法各有侧重:
1、Kappa检验旨在评价两种方法是否存在一致性;配对χ2检验主要确定两种方法诊断结果是否有差别;
2、Kappa检验会利用列联表的全部数据,而配对χ2检验只利用“不一致“数据,如表1中b和c;
3、Kappa检验可计算Kappa值用于评价一致性大小,而配对χ2检验只能给出两种方法差别是否具有统计学意义的判断。
Kappa值判断标准:
Kappa≥0.75,说明两种方法诊断结果一致性较好;
0.4≤Kappa<0.75,说明两种方法诊断结果一致性一般;
Kappa<0.4,说明两种方法诊断结果一致性较差。
有关具体计算过程,我们这里可以交给计算机统计软件SPSS来完成。
三、SPSS分析方法
1. 数据录入
(1) 变量视图
(2) 数据视图
2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。
3. 选择Analyze→Descriptive Statistics→Crosstabs
4. 选项设置
(1) 主对话框设置:将“A方法”和“B方法”两个变量分别放入Row(s)框和Column(s)框中(无位置要求)。
(2) Statistics设置:勾选McNemar和Kappa→Continue
(3) Cells设置:Counts中勾选Observed,输出实际观测频数;Percentages勾选Row和Column,输出行和列占比→Continue→OK
四、结果解读
表1 统计描述
表2 配对χ2检验
表3 Kappa一致性检验
表2中SPSS给出了McNemer检验的结果, P=0.022<0.05,提示两种方法诊断情况并不一致;表3中Kappa=0.506,P<0.001,提示两种方法诊断结果存在一致性,但是Kappa在0.4~0.75范围内,一致性一般。
五、撰写结论
A方法和B方法诊断结果一致性一般(Kappa=0.506,P<0.001); B诊断阳性率为67.9%,明显高于A诊断(50.9%),且差别具有统计学意义(P=0.022)。
PS: R*C配对列联表的χ2检验应用Bowker检验,SPSS的具体操作方法同McNemar检验。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/145350.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...